Mica: Users Guide

Matthew John McGill <mmtgi | | @se. unsw. edu. au>
James Henry Westendorp <j hw@se. unsw. edu. au>
Mohammed Waleed Kadous <wal eed@se. unsw. edu. au>
Claude Anthony Sammut <cl aude@se. unsw. edu. au>

Mica: Users Guide
by Matthew John McGill, James Henry Westendorp, Mohammed Waleed Kadous, and Claude Anthony Sammut

Copyright © 2003-2008 School of Computer Science and Engineering, UNSW & Matthew McGill & JamesHenry
Westendorp & Mohammed Waleed Kadous & Claude Sammut

Licensing
Micais released under the GNU Lesser General Public License(LGPL) version 3 or later. Y ou should have received a copy of the license
with Mica. For more information regarding the LGPL seeht t p: // www. gnu. org/ | i censes/ |l gpl . htm .

Table of Contents

O [Lo o (8 1o o RSO TUP PP UPPPTPRPPPPIN 1
EXAMPIE INEEIACHIONiiiiii ettt e e 1

[E Lo WD = [o PSPPSR UPPPTTRPPPPN 2

2. RUNNING IMICA ettt ettt e et eeeni e e e enanas 3
Y o] o PO PP TOPPPPR 4
0] oI Y o= ST UUP P TTUPPRTRR 4

IMIOBD PEISISEENCE ... ettt e et e et et e et e 4

N = o1 PP PPTPIN 5
AGENE FUNCLIONS ...t et et e et ettt e e e e e e 5
handleNEeWMODB(MOD) ... oo 5
handleDeletedMOD(MOD)uiiii e e 5
handleReplacedMob(Mob, MOD)iii 5
handleTypeManagerChangead() veeeriueiieii e 5
SEtTransPOrt(AGENTTIANSPON) ...cveven ittt e e e e e e e 5

o[= 100 o IO U PP PP PR 5
INIE(MICBPIOPEITIES) ..ottt et e e e e e 5

[CE 0T T g = PP SPPPTT 6

AGENE TIANSPOIT ..ttt et et et et et e e e e e et e ean e eees 6
CONMNECE(SEIING) . eeetie ettt ettt ettt ettt ettt e e e e et e e e e et e e e ee e e eentanaeeee 6

o[ES ol]0]0 1< ot [R TP PPPTT 6

=[RS e €S 1] 0T) RO P PSP 6
UNFEGISEEI(SIFING) - eeeetie ettt e et e e et e e e r e e e e aa e 6
QELTYPEMEBNAGEN () . eevvnneeeeri ettt ettt ettt e e et e e et e ettt e e et e e e e 6
WITEMOD(MOD) .ottt 6
FEAOMOD(SEIING) .. ettt ettt ettt ettt e et 6

el EMOD(SIING) .. eeeeeeeeeeit et 6
rEPlaCEMOD(MOD) ..o e 6
MODSEAICN(SIIING) ... eeetieee ettt e e et e et e e e e s 7
FISCONNECEEA() . vvtn ettt ettt ettt ettt e et e et e e e et e e e et e e e eba s 8
GELAGENINAIME() ..ttt e et e e et e e e e e e e e e eee 8
setMessageHandler(MessageHaNdIer)coovveiiiiiii e 8
synchronizedWriteMoB(Mob, 10NG)o.uuiiiiiiie e 8

5. BIACKIOBITS ... 9
Declaring MO TYPES ... ettt et eee 9

B. IMICEBRUNNEY ...ttt ettt e e e ettt e ettt e et et e e e e b 10
101 g = o TP TUPPPTTR 10

(600]01 {10 V1= 1 (o] o U TSP UPPPTTR 11

7. IVHICB SECUNTEY .ottt ettt e ettt e ettt e ettt e e et et r e et eeb e e e eenb e e e eenbnaeeees 12
SSL CONMECLIONS ...ttt ettt ettt e et e et e et e e e e e e e e e eeanas 12
SECUIE XML PrOtOCOLceeiieiieii ettt e e e e 12
VENTYING AGENS ...ttt ettt et e e e e e e e 13

RESIICHING AQENT ACHIONS ...ooveeieii ettt e e 13

8. TIO0IS .ttt e 15
DEFAUITAGENTS ...ttt e et et e et et 15
SIMPIEAGENTFTAIMIE ... ettt e et e e et e et e e e b e e e e aa s 15
L1 = o | PO PP PPPPTR 15

(o To DL ol Ul o = ST SO UPPPTPRUPPIN 16

Lol 1V = (= S PP SP PP UPPPTTR 17
PDARUNNEY ...ttt ettt e e et e ettt 18
PDARUNNEr CONFIQUIBLIONeevtieeieii ettt ettt et e et e et e e e erb e e e ena e eeeens 18
PrOXY A DRI ittt et 19
SEIVICES .ttt ettt et et s 19

=] ol oo = o] |V PP PP TP 20

List of Figures

1.1
1.2
3.1
5.1
6.1.
6.2.
7.1.
7.2.
8.1
8.2
8.3.
8.4.

Example Weather INTEraClion oo 1
Agent Connections to a BIackboardo 2
Example Mob Type HI€rarChycooouiiiiiiii et e 4
Example Type DEfINITIONScoouuiiiiiii ettt e et eenens 9
MicaRUNNEr USEr INEITACEevuiiiiii et e 10
Example MicaRunner Configuration Filccoouiiiiiiii e 11
Example Agent Verification Fileo 13
Example Agent RIGES Fileo 14
LOgDEDUGUES INEEITACE ... ettt e b 16
MODMEKES TNEEITECE ...ttt et ettt e e et e e e e e eeaans 17
PDARUNNET TNEEITACE ...ttt e s 18
Example PDARUNNer Configuration Fileuiiiiiiiiii e 18

Chapter 1. Introduction

MICA isatoolkit for usein the development of applicationsthat involve different modes of interaction and
diverse autonomous agents. MICA stands for Multimodal | nteragent Communication Architecture L

MICA isbuilt around a blackboard paradigm. Agents connect to the blackboard and register to be notified
when certain type of information are posted. Agents can then post their own messagesto the blacboard and any
agents registered for the message will be notified. When an agent is notified of a message it can process the
information as it seesfit and if needed post its own message in response.

This manual details how to construct Mica agents for usein avariety of applications.

Example Interaction

- X
.
Speech Recognition Speech Synthesis

Agent Agent

1 textFromlser 4 textForllser

Utterance:
"ltis 26 degrees and
sunny."

Utterance:
“What is today's
weather?"

2. getWeatherinfo 3 wieatherinfo

MNatural Language

Agent Date: Temp:
Today 26°C
Condition:

Sunny

o

Weather
Agent

Figure 1.1. Example Weather Interaction

Shown in Figure 1.1 is how a simple spoken interaction with a system could take place over Mica. This
interaction involves four independant agents communicating using four messages posted to the blackboard.
The sequence of the interaction is:

1. Upon recognition of a segment of speech a speech recognition agent posts the recognized speech.

2. When natified of the new speech text the natural language agent decodes the text into a command to get
today's weather information.

3. Inresponseto the command for weather informati on aweather agent poststoday'stemperature and condition.

IActually, thisis the latest version of the acronym. Previously it used to stand for "Multimodal Internet Conversation Architecture”, but then
it was realised () it wasn't restricted to the internet (b) it wasn't restricted to conversation either. But the name has stuck, in any case.

Introduction

4. The natural language agent recieves the weather information for today and transforms it into a standard

English sentence which it postsin response.

5. When notified of text to be returned to the user a speech synthesis agent synthesizes the text to audio data

and playsit to the user.

One of Mica's significant benefits its ability to separate the functional components of an application from
the interface components. In the examplein Figure 1.1 the weather agent responds to a command to get today's
weather generated by the natural language agent. This command could just as easily come from a graphical

interface and the weather agent would respond precisely the same.

Mica Design

Agent 2 Adent 1
A
Agent Transport
Transport Medium
\ 4
Agent

Transport
Medium

Transport <

Figure 1.2. Agent Connectionsto a Blackboard

Micais designed so that the blackboard and the agents that connect to it can kept a separate as possible. This

Blackboard

.

Blackboard
Transport

is done by funnelling all comminications between the blackboard and agents through a transport layer.

Aslong asthe blackboard and agents use the same transport layer they can communicate. The most common

one used and provided with Micadistribution isan XML over TCP transport layer.

Chapter 2. Running Mica

In the Mica distribution you will find the file mi ca. j ar . If you wish to use Micain an application you
simple need to add thisfile to the application’s classpath. If the application needsto usethe SQLBI ackboar d
then you will also need to add a compatible SQL database will also need to be available. This can be accom-
plished by adding the file hsql db. j ar ! provided with the distribution to the classpath as well.

ThereareClibrariesavailablefor creating agentsusing XML over TCPagent transportsthat may be provided
upon request. Send amessageto nmtgi | | @se. unsw. edu. au if you would like to try them.

Thisisabinary copy of the HSQL DB database available fromht t p: / / hsql db. or g/ .

Chapter 3. Mobs

Mica objects (mobs) are the messages that agents post to the blackboard. Mobs use aframe paradigm [1] to
formalize their information. In this paradigm each mob has a set of slotsthat hold values. Asyet Micadoes not
restrict the sots that can be added to a mob or the values that can be placed in adlot.

Mob Types

makb

N

data command

v

command
data

Figure 3.1. Example Mob TypeHierarchy

Mobs when created are given atype. A mob's type is used to determine which agents to notify when it is
written to the blacboard. Mica allows the multiple inheritance of types but doesn't accept cyclic inheritances.
The type 'mob’ is the top most mab type and al maobs will inherit from it either directly or indirectly. When
amob iscreated it is set to its given type.

Figure 3.1 shows what a simple mob type hierarchy may ook like.

The mob types are managed by the blackboard. For information on how to define mob types see the section
called “Declaring Mob Types’.

Mob Persistence

When a mob is written to the blackboard it is possible to tell the blackboard how long the mob is to be
kept. This is done by setting the mob's persistence. There are three values that a mob's persistence can take:
permanent, transient and connected. The meaning of these persistences are:

permanent The mob isto be kept until it is explicitly deleted.
transient The mob is not to be kept. Just notify registered agents and forget about it.

connected The mob isto be kept as long as the agent that wrote the mob remains connected to the black-
board. This persistence can be used by mob declaring services that they offer when they are
being used in a service oriented environment.

Chapter 4. Agents

In any system built utilising Micathe agents of the system are the most. Virtuall al functionality performed
by the system and all interaction with users will be performed or mediated by one agent or another.

Agent Functions

For an agent to successfully work with Mica it needs to implement a number of specific functions. These
functions are described in the following sections. So as not to restrict the agents capabilities how these agents
implement the functionsis |eft up to the agents devel opers.

Thefunctions required for agents can be divided into two groups. Thefirst four functions are used to receive
mobs and information from the blackboard. The rest are used to standardise the manner in which agents are
created and destroyed.

Some basic default implementations of these functions have been implemented in DefaultAgent, see the
section called “ DefaultAgents’ for information about the implementation.

handl eNewMbb(Mbb)

If any new mob is written to the blackboard and this agent is registered to receive it then this method will
be called. For most agents this is the most important function as it determines how the agent is to respond to
any received maobs.

handl eDel et edMob(Mob)

When amob is deleted from the blackboard and this agent isregistered for itstype then this method is called.
This allows an agent to stay up to date with information on the blackboard.

handl eRepl acedMob(Mob, Mob)

When amob isreplaced and this agent is registered for its type then this method will be called.

handl eTypeManager Changed()

This method is called when the blackboard detects that its mob hierarchy has changed. Typically this only
occurs when agents post mobs of unknown types which are then set to inherit from 'mob'.

set Transport (Agent Transport)

This method tells the agent what trasport it is to use to connect to the blackboard.

get Transport ()

This method is used to get the trasport the agent is using to connect to the blackboard.
init (M caProperties)

The standard process for creating and starting an agent is:

1. Create the agent.

2. Set the agent's transport.

Agents

3. Initialise the agent.

Thismethod isused toimplement thethird step in this process. Typically in thismethod an agent will connect
to the blackboard and register for any mob typeit isinterested in.

Passed as an argument to the method is a set of parameters that may be used to configure the agent.

term nate()

This method tells the agent to shut itself down. Commonly this method will disconnect the agent from the
blackboard.

Agent Transport

An agent's transport is its connection to the blackboard. As such the transport provides all of the actions
that an agent can initiate with the blackboard. The function provided by the agent transport are described in
the following sections.

connect (Stri ng)

This method attempts to connect to the blackboard using the given string as the agent's name. If successful
the method will return the actual name used to identify the agent.

di sconnect ()

Disconnects the agent from the blackboard.
regi ster(String)
Tellsthe blackboard that the agent is interested in all mobs of the given type.

unregi ster(String)

Tells the blackboard the agent is no longer interested in the given type.

get TypeManager ()

Requests a type manager that knows the current type hierarchy.

Wi t eMbb(Mob)

Writes the given mab to the blackboard.

readMob(String)

Reads the named mob off of the blackboard.

del et eMob(Stri ng)

Deletes the named mob from the blackboard.

repl aceMob(Mob)

Overwrites the mob with the new values.

Agents

nobSear ch(Stri ng)

This method is used to search the blackboard for all stored mobs that fit a given condition. The parser for
the search string is dependant on the actual blackboard being used.

Search Query Language

The default implementation in the Micadistribution includes a blackboard with an SQL back end. Searching
this blackboard is done using standard SQL statements with some functional additions applicable to mobs.
These functions can be used to restrict the output from the search or to order the returned mobs.

SQL Mob Functions

t ypeof (nmob, 'type') alows you to check the type of a mob. This method returns a boolean.

hassl ot (nob, ' sl ot Nane') alowsyou to check whether amob has a particular ot or not.

getsl ot 1(nob, 'slot- getsthefirst value of adlot. It returns a string.

Nane')

get sl ot 1asdbl (nob, getsthefirst value of adot. It returns adouble.

' sl ot Nane')

get sl ot 1asi nt (mob, getsthefirst value of adlot. It returns an int.

"sl ot Nane')

get sl ot n(nob, ' slot- isauseful method for getting arbitrary information from a multi-valued
Nane', pos) slot.

cont ai ns(nob, 'slot- alows you to check whether a mob has a particular value stored some-
Nane', 'value') where in amulti-valued slot.

SQL Examples
Here are some example queries to help you on your way.
Getting all mobs on the blackboard
To get all of the mobs currently on the blackboard you can use:
select * from nobs
Getting all mobs of a particular type
To find al mobs of a particular type you could try:
sel ect * from nobs where typeof (npbb, 'text')
Ordering mobs
To order the mobs you can try the or der by command. Thiswill look like:

sel ect * from nobs where typeof (npb, 'text')
order by getslotl(nmob, 'creationTinme')

Appending asc or desc will place the mobs in ascending and descending order respectively.
Getting the first of a list of mobs

To get the most recent mob you could try:

Agents

select top 1 * from nobs
order by getslotl(mob, 'creationTinme') desc

Finding mobs with particular properties
To find amob you have written you could use:

select * from nobs
wher e contai ns(mob, 'creator’', 'nyAgent Nane')

Aslong as only one valueisin the creator slot this could also be done by:

sel ect * from nopbs
where getslotl(mob, 'creator') = 'nyAgent Nane'

| sConnect ed()

Checks that the transport is connected to the blackboard.

get Agent Nane()

Asks the transport for the name the agent is currently connected to the blackboard with.

set MessageHandl| er (MessageHandl er)

This method is used to tell the transport who is to respond to the messages coming from the blackboard.
Typically an agent transport's message handler is the agent and is set when the transport is created. So this
method is often not required.

synchroni zedW it eMob(Mob, | ong)

An extension of the agent transport is a synchronized transport ! This transport allow mobs to be used to
perform remote proceedure calls(RPC) over Mica.

This method writes the given mab to the blackboard and waits for amob to be sent in reply. A reply mobis
any mob that the agent is registered for that names the original mob inits'replyTo' slot.

The method returns an object containing the name of the written mob and the received reply. If no reply
mob is received in the given time period then the returned object will have no reply.

The implementation is unsw. cse. ni ca. sync. Synchr oni zedTr ansport which is used by wrapping it around a standard agent
transport.

Chapter 5. Blackboards

Theblackboard isthe central hub in the Micaarchitecture. All agents connect to the blackboard and all mobs
are written to it. The blackboard is responsible for deciding which agents need to be notified when mobs are
written and modified.

The standard Mica distribution includes 2 simple blackboards. The Si npl eBl ackboar d stores mobs
inaHashMap. The SQLBI ackboar d stores the mobs in atable in an SQL database and provides an SQL
style language for searching for mobs. To use the SQLBI ackboar d acompatible SQL database needs to be
available. Included in the Micadistribution ishsql db. j ar abinary distribution of the HSQLDB database.
To usethiswith the SQLBI ackboar d add hsql db. j ar to the classpath.

Declaring Mob Types

<t ypedesc>
<nobdecl nanme="text" >
<sl ot name="utterance" />
</ nobdecl| >

<nobdecl name="text FromJser" persistence="transient" >
<parent nanme="text"/>
</ nobdecl >

<nmobdecl name="t ext ForUser" persistence="transient" >
<parent nanme="text"/>
</ nobdecl >

<include file="nyTypes.xm" [>
</typedesc>

Figure 5.1. Example Type Definitions

As the blackboard is responsible for maintaining the mob type hierarchy the blackboard needs a means by
which it knows what the type hierarchy is. With the standard Mica blackboard a devel oper can define the type
hierarchy using asimple XML file. An example of such afileis shown in Figure 5.1.

When constructing these configuration files each mab type is declared in its own nobdecl| element. This
element givesthe name of the type and its default persitence. Inside the type declaration you list the parent types
and optionally the dlots that the type expects. As yet the slot information is not used except in documenting
the types for developmental purposes.

Inside the type definition files it is possible to use an i ncl ude element to load types from a given file
or directory.

When loading the types the blackboards default action isto look in the conf i g/ t ype directory of the
M ca. Hone directory which is by default the current working directory. All . xm filesin this directory are
considered types definition files and are loaded.

For more details on the XML format of type definition fileslook int ypes. dt d.

Chapter 6. MicaRunner

MicaRunner is atool to simplify and automate the task of starting up a blackboard and series of agents. Its
main roleisfor starting and stopping a mica network during devel opment and testing.

Interface

£ MicaRunner E|E|g|
Blackboard Start All || Terminate All || Save Current || Save all || Clear Current || Clear all || Exit |
[Blackhoard | Debugger | Pad1 | Pad2 | MobMaker2 |
.'.'. stop |Tue Dec1313:06:17 EST 2005 BlackboardHandler: Starting new blackboard process with args: Fhome=. -pon=8500 -de
hug=10-catch -typePath=configitype dbPath=datathlackhoard -persistent]
=PROCESS= initialising
Debugger Tue Dec 13 13:06:18 EST 2005: Here are the tables: null
=PROCESS= initialised
.’.’. — Tue Dec 13130619 EST 2005: ProcessinputyatcherThread(Blackboard): Starting watch.
al
Pad1
009 o
Pad2
009 .-
MobMaker2
009 o

Figure6.1. MicaRunner User Interface

By default MicaRunner opens a graphical interface though it can be configure to run with out it.

Thisinterfaceis divided into roughly 3 sections. On the left of the interface you will find the name of each
agent/blackboard and below it a coloured indicator and a button. The button is used to start and stop the agent/
blachoard and the indicator shows the agent's status. When the agent is running the indicator will be green and
when it is stopped the indicator will show red. When the agent is started the indicator will turn amber until the
agent is completely initialised. If the indicator is amber and flashing it means the agent is waiting for an agent
it depends on to finish initialising before it can start.

At thetop of theinterfaceisaline of buttonsthat can be used to start and stop al of the agentsin MicaRunner.

Taking up most of the interface is a series of text panesin a set of tabs. Each agent hasits own tab and in
the text pane will be found the output of the process in which the agent is running.

Note

As yet these text panes cannot be used to send input to the processes/agents.

10

MicaRunner

Configuration

<runner >
<bl ackboard />

<agent class="unsw. cse. m ca.tools. LogDebugger" nanme="AnAgent" />

<host name="wwwv. myhost. coni />
<port nunber="8500" />

<agent class="unsw. cse. ni ca.tool s. LogDebugger" nane="Anot her Agent" >
<depends name="AnAgent" />
<arg paran¥"x" val ue="600" />
</ agent >
</ runner >

Figure 6.2. Example MicaRunner Configuration File

MicaRunner needs to be given a configuration file for it to run. A very simple configuration file is shown
in Figure 6.2. This configuration file tells MicaRunner what blackboards and agents are needed.

When defining an agent it is possible to add adepends element to indicate that the agent requires another
agent to be running before it can be successfully be started. By default if the runner has to start a blackboard
all agentswill be dependent upon it running.

When declaring an agent the class which implements the agent needs to be specified. Optionally the name
the agent is to use can also be given.

It is possible to define parameters using ar g tags that will be passed to an agent/blackboard initsi ni t
method.

By default agentswill attempt to connect to ablackboard running on the local machine and both blackboards
and agents will attempt to connect using port 8500. It is possible to use host and port tagsto override this
default behaviour.

If all agents are connecting to aremote blackboard MicaRunner is not required to start alocal one.

MicaRunner processes tagsin the order found in the configuration file so settings will only apply to agents/
blackboards declared after the setting and not those declared before it.

There are many more configuration options available to MicaRunner. For detailslook at r unner . dt d.

11

Chapter 7. Mica Security

The common transport used with Micaand used by default with MicaRunner isan XML protocol sent over
TCP. This provides no security at all for either agents or mobs. Alternatively it is possibleto use a secure XML
protocol and an SSL connection layer.

When using MicaRunner the transport protocol and connection layers can be selected using at r anspor t
tag. Available protocols are 'xml' and 'secure’, while connections can be either ‘tcp' or 'sd'. Such a tag will
look like:

<transport protocol ="secure" connection="ssl" />

SSL Connections

The SSL connection for Micaallows all communication between an agent and the blackboard to be encrypt-
ed.

The SSL connection layer for Mica uses standard Java SSL sockets. To use these sockets Java needs
to know where to look for valid SSL certificates. The eassiest way to do this is to give Java access to a
key store and the password for the store. For a blackboard this can be done by setting the Java parameters
javax. net.ssl . keyStore andj avax. net. ssl . keySt or ePasswor d. For an agent the parame-
tersj avax. net.ssl.trust Store andj avax. net. ssl . trust St or ePasswor d need to be set.

Key stores can be created using Java's keyt ool tool.

If using MicaRunner the key store can be set using akeyst or e tag attched to the t r anspor t tag. This
will look something like:

<transport protocol ="secure" connection="ssl" >
<keystore | ocati on="nyKeySt ore" password="123456" />
</transport >

Secure XML Protocol

The secure XML protocol isan extension of the XML that can be used to restrict the mobs that an agent can
see or write. It can also be used to prevent unauthorised agents from connecting to the blackboard.

On the agent side of the secure XML protocol thereislittle changeto the XML protocol. The only changeis
that the secure protocol allows the optional setting of a password that will be sent along with the agent's name
when connecting to the blackboard.

Virtually all security in the secure XML protocol ishandled in the blackboard's transport layer. Thisisdone
by adding a security manager to the blackboard's transport protocol. This security manager is responsible for
deciding whether an agent will be allowed to connect and what it can and cannot do with the mobs on the
blackboard.

A very simple static security manager has been implemented in
unsw. cse. m ca. bl ackboard. secur e. Si npl eBl ackboar dSecuri t yManager. When using
MicaRunner this is the security manger used. This security manager will look in the confi g/ security
dirctory of M ca. Hon® for its configuration files.

12

Mica Security

Verifying Agents

<agent s>
<group name="Witer" />
<group nane="Reader" />
<group nane="Cuest" groups="Reader" />
<agent nane="AnAgent" password="123456" groups="Witer Reader"/>
<agent nane="Anot her Agent" groups="CGuest"/>
</ agent s>

Figure7.1. Example Agent Verification File

The Si npl eBl ackboar dSecuri t yManager will look in the file agent s. xml for information on
allowed agents and the groups to which they belong. Groups can be defined in ahierarchy if desired. Figure 7.1
shows an example configuration file with 3 groups and 2 agents.

When an agent is declared with a password all agents attempting to connect using that name must provide
the required password. If no password is given then any agent trying to use that name with a password will
be refused connection.

Agents can belong too multiple groups and groups can inherit from multiple groups. Todo soadd agr oups
attribute to the tag and a space(' *) separated list of groups.

The format for the agent verification fileis givenin agent aut hori sati onrul es. dt d.

When using MicaRunner the password for an agent to use can be set by adding at r ansport tagto the
agent and setting the passwor d attribute. Thiswill ook like this:

<agent class="M/Agent" >
<transport password="123456" />
</ agent >

Restricting Agent Actions

Si npl eBl ackboar dSecuri t yManager will look inther ul es. xm configuration file for the rules
it uses to determine what an agent can and cannot do. An example rulesfileis shownin Figure 7.2.

Inther ul es itispossible to set whether the default is to accept or reject an action. If no default is given
the default is to accept.

Therulesarealist of i f elements that say whether to accept or reject the action. Each i f element has a
condition followed by at hen tag and an action. It may also have an el se tag and aternate action for when
the condition is false. The action can be to accept or reject or another conditional i f statement.

13

Mica Security

<rul es default="reject">

<if>
<and>
<action type="wite"/>
<group nane="Witer" />
</ and>
<then />
<accept/ >
</if>
<if>
<and>
<action type="read" />
<group nane="Reader" />
</ and>
<then />
<if>
<and>
<group nane="Cuest" />
<or >
<type name="cl assified" />
<sl ot name="cl assified" />
</ or>
</ and>
<then />
<reject />
<el se />
<accept />
</if>
</if>
</rul es>

Figure 7.2. Example Agent RightsFile

Thereareanumber of conditionsthat can be used the determine whether or not to accept an action. Available
conditions include:

action testif theagentistrying to read or write the mob
group testif the agent belogs to the given group
type test if the mob is of a given type

sl ot test if the mob has a slot, can also be used to check if a dot has a specific value
and groups a set of conditions that must all hold true

or groups a set of conditions of which at least one must be true

not tests that a condition isfalse

Each rule will be processed in order until a designation to accept or reject isfound. If al rulesaretried and
no designation is made the default action to accept or reject will be used.

The XML format for the rule configuration fileis given in agent aut hori sati onr ul es. dt d.

If an agent is allowed to read a maob it will recieve all handl eNewiMbb, handl eDel et edMbb, han-
dl eRepl acedMbb events associated with it. It will also be able to see the mob using the r eadMob and
nobSear ch functions. The ability to write amob includes writing the mob, deleting the mob and replacing it.

14

Chapter 8. Tools

To makedevel oping an application with Micaeasier anumber of tools have been put together and includedin
the standard Mica distribution. These tools serve avariety of purposes from making agents easier to implement
to enabling state of the blackboard to be examined and manipul ated.

DefaultAgents

To make constructing agents a little easier two abstract implementations of the Agent interface are avail-
able.

Thefirst, Def aul t Agent ispractically empty adding empty method bodiesto many of the required meth-
ods. Any agent extending this class will haveto implement itsowni ni t and handl eNewivbb methods.

The second abstract Agent implementation is Def aul t Agent 2. This class provides generic implemen-
tations of the interface functions.

Def aul t Agent 2's mgjor differences to Def aul t Agent are that it includes a constructor that can be
used to ensure the agent hasan Agent Tr anspor t that can be used for synchronous communications over the
blackboard (see the section called “synchronizedWriteMob(Mab, long)”) and it maintains a TypeManager
that is kept up to date with the blackboard.

Thei ni t method of Def aul t Agent 2 will connect the agent to the blackboard using a name supplied
as an argument or else using the agent's class hame.

SimpleAgentFrame

Si npl eAgent Fr ane isaextension of JFr amre that can be used to provide an agent with asimple GUI.

The main benifits of the Si npl eAgent Fr ane isthat is can configure its size, position and title according
to parameters given to the agent and that when the window is closeit will call t er m nat e on the agent.

GUIAgent

GUI Agent isan extension of Def aul t Agent 2 that addsa Si npl eAgent Fr are to the agent.

Any agent that extends GUI Agent will havetoimplement cr eat eConponent s(M caProperti es)
inwhich it will create its GUI components and add to the Si npl eAgent Fr ane f r are.

GUI Agent 'st er m nat e method will close and discard the frame when called.

Some exampl es of the agents that can be built using GUI Agent are LogDebugger and MobM aker.

15

Tools

LogDebugger

LogDebugger
Mob

9] MICA Objects

o [1: textFramUser
D utterance: [Hello]
D creationTime: [2007-02-07 14:34:15.6358]
D creator; [SpeechRecognizer]

¢ [2: tedtFarlser
D utterance: [Hi. ts good to see you again)]
D creationTime: [2007-02-07 14:34:23.500]
D creator: [ChatBot]

o [3: textFromUser
D utterance: [ts good to see you too]
D creationTime: [2007-02-07 14:34:45.576]
D creator; [SpeechRecognizer]

¢ [4 textForlUser
D utterance: [So, how are you?]
D creationTime: [2007-02-07 14:35:00.674]
D creator: [ChatBof]

o= [5 textFromUser

o [& textForlUser

refresh || refresh current || hide H clear H delete || delete all

Figure 8.1. LogDebugger Interface

TheLogDebugger isafairly simple agent that keepstrack of all of the mobs on the blackboard. Itisregistered
for al mobs so when any mob iswritten, replaced or deleted it is notified and logs the change.

Theinterface to LogDebugger is shown in Figure 8.1.

Colour is used to show a mob's state. If the mob is black then it resides on the blackboard. If the mob is
green then it istransient. If it is blue then it has been replaced. If it isred it has been deleted. Red mobs that
have aline through them show when the mob was del eted.

The buttons along the bottom of the interface alow the user to refresh the display with all mob changes
since the agent was initiated, refresh only the mobs currently on the blackboar, hide selected mobs, hide all
mobs, delete selected mobs and delete all mobs.

The LogDebugger a so has asimple search mechanism for displaying those mobsthat match asmall number
of criteria

16

Tools

MobMaker

B MobMake L |E

e:mob b

Slots [stot

slot:value add slot:

slot2:another val... i |slot2 |
UL 2| value:

|anntherva|ue |

clear write

Figure 8.2. MobMaker Interface

The MobMaker agent is a simple agent used in testing how agents respond to mobs. A MobMaker can be
used to create any type of maob it can find from a TypeManager it loads when it is initiated. The MobMaker
interface is shown in Figure 8.2.

To create amob using the MobMaker select the mob type from the pull down menu at thetop of theinterface
then add each dot and its value. If alist of values is required for a slot. The add each value separately, the
MobMaker will add the values in the order that they are found in the slot list. If needed slots can be removed
from the mob.

When the mob is compl ete press the 'write' button to write it to the blackboard. Once th mob is written you
can edit slots and type and write another mob or you can select 'clear’ which will clear all the valuesfor the mob.

17

Tools

PDARuUNner

PDA Runner G» 4 6:00 €3
BB: blackboard.cse.unsw.e |: |8500
Debug: |Information —
Agent: |PDAAgent v
< | ID
Start
ﬁ e

Figure 8.3. PDARunner Interface

The PDARunner is a small tool for starting Mica agents on a PDA. The interface for PDARunner can be
seen in Figure 8.3.

Thetop line of the interface allows the user to select the blackboard the agent is to connect to. The second
line allows the user to select the amount of debugging information they want to see. The third line is a pull
down menu of currently available agents. Below this is a text area which will display all debugging output

the agent writes using unsw. cse. m ca. uti | . Debug. At the very bottom of the interface is the button
to start the agent.

Note

As yet the PDARunner only supports XML over TCP transports as it is not yet known whether
SSL sockets are available on the PDA.

PDARunner Configuration

<agent cl ass="unsw. cse. m ca. denp. PDAAgent" >
<cl asspath >
<pat hel ement url ="pdaagent.jar" />
</ cl asspat h>
<arg parane"context" val ue="exanple" />
</ agent >

Figure 8.4. Example PDARunner Configuration File

An example configuration file for PDARunner is shown in Figure 8.4. The PDARunner looks in the\ My
Docurent s\ Jar s\ folder of the PDA for its agent configurations. Any file with a name like ' agent -
* xm ' inthefolder is considered to be an agent configuration file.

18

Tools

The root element of the fileisan agent tag which gives the class for the agent and optionally a name for
the agent.

When the PDARunner is started it usesaminimal classpath so the agent can be givenacl asspat h tagto

add required classesto the classpath. Each new jar file or packagelocation isadded using aseparate pat hel e-
nent tag.

If needed, the configuration file can list a series of parameters using ar g tags that will be passed to the
agentinitsi ni t method.

The precise format for the PDARunner configuration files can be found in pdar unner . dt d.

ProxyAgent

TODO: ...

Services

TODO: ...

19

Bibliography

[1] Minsky, Marvin. A Framework for Representing Knowledge. Massachusetts Institute of Technology. . 1974.

20

	Mica: Users Guide
	Table of Contents
	Chapter 1. Introduction
	Example Interaction
	Mica Design

	Chapter 2. Running Mica
	Chapter 3. Mobs
	Mob Types
	Mob Persistence

	Chapter 4. Agents
	Agent Functions
	handleNewMob(Mob)
	handleDeletedMob(Mob)
	handleReplacedMob(Mob, Mob)
	handleTypeManagerChanged()
	setTransport(AgentTransport)
	getTransport()
	init(MicaProperties)
	terminate()

	Agent Transport
	connect(String)
	disconnect()
	register(String)
	unregister(String)
	getTypeManager()
	writeMob(Mob)
	readMob(String)
	deleteMob(String)
	replaceMob(Mob)
	mobSearch(String)
	Search Query Language
	SQL Mob Functions
	SQL Examples
	Getting all mobs on the blackboard
	Getting all mobs of a particular type
	Ordering mobs
	Getting the first of a list of mobs
	Finding mobs with particular properties

	isConnected()
	getAgentName()
	setMessageHandler(MessageHandler)
	synchronizedWriteMob(Mob, long)

	Chapter 5. Blackboards
	Declaring Mob Types

	Chapter 6. MicaRunner
	Interface
	Configuration

	Chapter 7. Mica Security
	SSL Connections
	Secure XML Protocol
	Verifying Agents
	Restricting Agent Actions

	Chapter 8. Tools
	DefaultAgents
	SimpleAgentFrame
	GUIAgent
	LogDebugger
	MobMaker
	PDARunner
	PDARunner Configuration

	ProxyAgent
	Services

	Bibliography

