Mica: Technical Guide

James Henry Westendorp <j hw@se. unsw. edu. au>
Mohammed Waleed Kadous <wal eed@se. unsw. edu. au>
Matthew John McGill <mmegi | | @se. unsw. edu. au>
Claude Anthony Sammut <cl aude@se. unsw. edu. au>

Mica: Technical Guide
by James Henry Westendorp, Mohammed Waleed Kadous, Matthew John McGill, and Claude Anthony Sammut
Copyright © 2006, 2007 School of Computer Science and Engineering, UNSW & James Henry Westendorp &

Mohammed Waleed Kadous & Matthew McGill & Claude Sammut

Licensing
Micais released under the GNU Lesser General Public License(LGPL) version 3 or later. Y ou should have received a copy of the license
with Mica. For more information regarding the LGPL seeht t p: // www. gnu. org/ | i censes/ |l gpl . htm .

Table of Contents

O [Lo o (8 1o o RSO TUP PP UPPPTPRPPPPIN
A o = 0| ST
TRANSPOT SEBCK ... eeet ettt ettt e e et e e e e e e e e e
Synchronized COMMUNICEIIONSuuiieeiiiee ettt et e e e b e e e eae e e e ani e e ennans
3o BIACKIIOBIT ... e e
TRANSPOT SEBCK ... eeet ettt ettt e e et e e e e e e e e e
D 0 S S (0 =0 L= TP PP PPPPP
. MICA RUNNEE ..t et e e et e et et e e et et e e e e eenas
5. XML Trangport ProtOCOloieeieeiiii ettt ettt e et e e e e eenens
TRANSPOT SEBCK ... eeet ettt et e et e ettt e e e e e e

List of Figures

2.1. Control flow for agent actions and MESSAGEScevrtureiiiiieee ettt e e e e e
2.2. Control flow for synchronized agent actions and MESSAgEScccuuuieeiiiiieeiiiie e

4.1. MICA RUNNEI AQENE PrOCESSESccviiiirieiie ettt ettt e e e e e enes

Chapter 1. Introduction

Thisguide providesatechnical description for some of the more complex elelemtnsof the MICA framework.
It isintended for use by developers and maintainers. It is NOT a description of the system or a User's Guide.

Chapter 2. Agents

TODO: ...

Transport Stack

Agent

00

Agent

CompoundAgentTransport

4

XMLAgentProtocol

CompoundAgeritTransport

XMLAgentProtocol

Queued Queued

Message Message
Handler Handler

3
TCPAgentConpection TCPAgentConnegtion
@O 00)
L —
Network Network

Figure 2.1. Control flow for agent actions and messages

Agent-Blackboard communication is based on two high-level interfaces. Agent Actions and
Agent Messages. Individually, these interfaces are relatively simple. However, providing an asynchronous
two-way communications channel that implementsthese interfacesis more complex. Figure 2.1 showsthe steps
involved in this communication process when (@) executing an action and (b) handling a message from the
blackboard, when using the XMLOver TCPBI ackboar d.

Action execution requires the following steps:

1. The process begins when the agents calls an action method on the transport. The calling thread moves down
through the protocol, generates a message, and sends that message. Once control returns to the protocol
class, the thread blocks and waits for areply.

2. The protocol class has an internal thread responsible for parsing the incoming XML as it arrives from the
network via the TCP connection. This thread is already running but remains block until a message arrives
from the network.

3. Once a complete message has arrived, the parser thread processesit.

4. The message is an action reply, so it is stored in a location where the initiating thread can access it. The
initiating thread is then woken.

Agents

5. the initiating thead is resumed. It gets the reply and passes it back to the agent as the return value for the
action.

The right-hand diagram shows the sequence of stepsfor the arrival of amessage from the blackboard. These
are:

1. The parser thread has block and is waiting for new information from the blackboard.
. Once a completed statement arrives, it parsed and seend to be a message.

. The message is passed to the protocol's other internal thread - a QueuedM essageHandler.

A W DN

. The message handler thread repeatedly calls the agent's message functions as new messages arrive. If the
thread is busy when new messages arrive, they are simply added to the queue and dealt with in turn. This
ensures that the agent is only ever handling a single message from the blackboard at any one time.

Synchronized Communications

Agent Agent

A

ISynchronizedAgentTransport

Repl) ’gueued
e essage
By Handlgr
OaXs A

CompoundAgentTransport

XMLAgentProtocol

SynchronizedAgentTransport

Queued
Message
Handler

3

CompoundAgeritTransport

XMLAgentProtocol

Queued Queued

Message Message

Handler Handler
8

TCPAgentConpegtign TCPAgentConnegtion

0000 ®

Y

Figure 2.2. Control flow for synchronized agent actions and messages

MICA also provides a capability for synchronous communication between agents. This functionality isim-
plemented as an optional additional layer on top of the asynchronous communications classes. Using this func-
tionaliy, an agent can send amob and wait for areply to that mob. The mobs themselves are no different to any
other mob. Rather, the process uses a specific slot to mark the return mob as being areply to the original mob.
Thisdotiscalled "replyTo" and itsvalueistheid of the mob (or mobs) to which it isareply. The synchronized
transport layer uses the value of this slot when looking for areply.

Aswiththeasynchronoustransport, the high-level interface Synchr oni zedAgent Act i onsisquitesim-
ple. There is just one additional action the agent can call. However, implementing this functionality is more
complex asit involves both an action and a message at the asynchronous level.

Agents

Figure 2.2 shows the flow of control for (a) synchronized messaging (b) the arrival of a normal message

when a synchronized wrapper isin use. The steps involved in a synchromous action are;

1

The initiating thread generates a message inside the protocol and sends it, before block and waiting for a
reply.

. The parse thread is blocked and waiting for input
. Input arrives from the blackboard
. Theinput is parsed and found to be an action reply. The reply is stored and the initiating thread notified.

. The initiating thread gets the reply and returns to the synchronized layer. It then blocks(again) and waits

for areply mob to arrive.

. The XML parser thread is again block and awaiting input
. More input arrives from the blackboard.
. Thisinput is parsed and found to be a message. It is passed to the queued handler.

. The queued handler passes the message to the synchronous handler. Hereit isdetermined that itisareply to

the mob originally sent by the initiating thread. The mob is stored as a synchronous reply and the initiating
thread notified.

10.Theinitiating thread grabs the reply mob and passes it back to the agent.

Thefirst five steps steps are the same as for asnychronous actions, it is only after the action reply is obtained

the the process varies.

The synchronous wrapper must also ensure that any normal (non-reply messages) are still handled correctly.

Again, the stepsinvolved in this are similar to those for normal message handling:

1

2.

3.

the parser the thread is blocked and awating input.
Input arrives from the blackboard.

Theinput is found to be a message and is passed to the queued message handler.

. The message handler passes the message to the synchronous layer. Here it is found that the message is not

areply to any sent messages, so it must be handled as a normal message. It is passed to a second queued
handler inside the synchronous layer.

. The synchronous queue handler behaves identically to the one in asynchronous layer, processing one mes-

sage at atime in the order they arrive.
Several points worth noting in this process are:

Reply mobs are NOT handled like normal maobs - the agent's handl eNewbb functions is never called
for them.

It ispossible that other messageswill arrive between theinitial action and the arrival of the reply mob. These
mobs are handled like any other - they are added to the queue inside the synchronouslayer and handled in the
order they arrive. Of course, if the initiating queue is queuedMessageHandler thread (ie. the synchronized
call was made from with one of the agents's message handler functions) then none of these mobs will be
handled until after that message handling is complete

It is possible that no reply mob arrives. The synchronous calls have a timeout parameter and it is strongly
recommended that be used to avoid having the thread block indefinitely while waiting for a reply that may
not arrive.

Chapter 3. Blackboard

TODO: ...

Transport Stack

TODO: ...

Database Storage

TODO: ...

Chapter 4. MICA Runner

MICA Runner isatool enabling the configuration and execution of multiple agents on a single machine. It
can also be configured to provide ablackboard on the current machine. MICA Runner functionality isdescribed
in the Users Guide. This section describes the way MICA Runner creates the child processes and interacts with
them.

Figure4.1. MICA Runner Agent Processes

Figure 4.1 shows how Mica Runner uses child processes for each agent and the components used for com-
munication between processes. The components used for each agent within the MicaRunner process are:

AgentHandler Each agent is represented within MicaRunner by an AgentHandler. This class
contains all the functionality necessary to create, observe and terminate an agent.

AgentSettings The AgentSettings classis apassive class containing the information necessary to
create and configure an agent. It is the primary data source for the AgentHandler
class.

InputOutputBridge The /O bridge classis athread that gathers the output from the child process and

passes it to the agent handlers output window

ProcessHandlerPane Each agent handler has a processHandlerPane. Thisis this small controller pane
in the list on the left hand side of the runner.

DebugPane The debug pane isamodified TextAreathat acts as a sink for the I/O bridge
Severa classes are also used within the child process. These are

AgentHandler The child processisinitiated using the main() method within the AgentHandler class

Chapter 5. XML Transport Protocol

TODO: ...

Transport Stack

TODO: ...

	Mica: Technical Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Agents
	Transport Stack
	Synchronized Communications

	Chapter 3. Blackboard
	Transport Stack
	Database Storage

	Chapter 4. MICA Runner
	Chapter 5. XML Transport Protocol
	Transport Stack

