Mica User's Guide

Mohammed Waleed Kadous
Claude Anthony Sammut
James Henry Westendorp

Mica User's Guide
by Mohammed Waleed Kadous, Claude Anthony Sammut, and James Henry Westendorp

Published 2005
Copyright © 2004,2005,2006 Smart Internet Technology CRC, Inc. & Mohammed Waleed Kadous & Claude

Sammut

Table of Contents

O [Lo o (8 1o o RSO TUP PP UPPPTPRPPPPIN 1
BasiC iNtrodUCIoN 10 IMICEAceeeriieeeii et 1
Comparing MICA t0 Other SYSIEIMScouuiiiiii e 2

MICA as atype of datalaseviiiiiiiii e 2
MICA as a Publish/Subscribe Modelooooiiiiiii e 2
MICA as aweb service and/or RMI and/or RPCuiiiiiiiiiiiiiiiec e 3
MICA compared t0 CORBA ...ttt et e e e e eena e eeees 3
MICA as an agent arChiteCUIeiiiiiii e 3
THE MBNUEL ...t ettt e et et e et e e e et e e e 4
2. TRE MICA DESION ettt ettt ettt ettt et e et e b e e et e e et et e et et e e e e 5
BaSIC ENEITIES ... eiieee et 5
The BIaCKDOAITieiii et 5
F 01 1 £ PPN 5
IMITCA ODJECES ...ttt ettt e et et e et e e e et e e e e na s 5
PULting the PIECES TOGEINEN ... i e e ettt e e 6

3. Installing and running MICA ... ettt e et e e 8
GELLING MICA . ettt et e et et e e s 8
IMICA FEOUITEIMIENTS ... eett ettt ettt ettt ettt ettt e et et e et e et e et e eb e et e et e e e e nta e e eenaans 8
INSEAITING MICA oo ettt e et e e et e e e na e 8
A MOre det@il @ 100Kcoeiiiieeei et 9

4. The MICA iMPIEMENTALIONuiiiiii ettt e e et eeeeaa s 11
S 11 £ T PP TOPPTT 11
A quick walk through the MICA AP ... e 11

UNSW.CSE.MICATIAIMOD ... i e 11
UNSW.CSE.Mi Ca.agent. AQENETIANSPONvevvt ettt ettt eaanns 12
UNSW.CSE.MICAAGENT.AGENTeeeeii ettt ettt e e e e e 13
Setting up Agents and ANt TIaNSPOMS ... cveeueueeiiei et e et e e et e e eea e eeneans 14
The MICA TYPE SYSIEITI ...ttt ettt e e e et e e e aa s 14
Using the BIAckDOard i 15
ConfigUIING MICA oo ettt e et ettt e e e e et e e e eate e eees 15
Giving information aDOUL TYPEScieiiieieii e 15
The MICA QUENY TaNQUBOEoeeeeiiiee ittt e e e 16

5. A simple client: SharedPadoooiiiiiiii e 18

6. A collection of clients: the mail reading appliCationccuuiiiiiiiiiiiiii e 20
A\ USCEIMAITO vttt ettt et a et e e enaas 20
€St OF CRAIACIENS ...ttt ettt et e e e e e eaaes 20

SEtiNG UP MOBS .. 21

7. WIting YOUN FIFSt ClIENTS ..oeee e et e e e e e e e 27

8. Writing your own transport MEGIUMeiiiieieiiii et e 28

9. Writing YOUr OWN SECUFLY POIICY ...veveieiiiti ettt ettt e e e s 29

10. Writing your own blackboardc..uuiiiiiiiiiii e 30

List of Figures

1.1
2.1,
3.1
3.2
4.1.
4.2,
4.3.
4.4,
5.1
5.2
5.3.
5.4.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

A TYPICEI OAA QUETY .ttt ettt ettt et eaaa s 3
How MICA cOMPONENtS @re CONNECTEMcoveriiieeiiiiie ettt ettt e e e e re s 6
MICARUNNET WINTOWeiiiti ettt ettt ettt ettt et e et et e et et e e e e enbe e eeenes 9
SNArEOPAO-TUNXIMI ettt ettt e et et et e e e e e e na e e ennas 10
A SIMPIE IMOD e et 11
A MOre COMPIEX MOD ... ettt 11
A MicaRunner XML file snippet with complex argumentsooeveuiiiieiiiiiieee e 15
SNBPES XM ettt a e 16
The init() method for SharedPadoooiiiiiiii e 18
The drawSharedLing() method for SharedPadcoouviiiiiiiiii e 18
The handieMob() method for SharedPadoooeuiiiiiiiii e 19
The newLine() method for SharedPadocoovriiiiiii e 19
Screenshot of the Whizbang interface ... 21
The type declaration for types of text used between agents.oovvviviiiiiiinc e, 22
rEadOrdiSPIAY . XIMI ... ettt e ettt e et et e et et e e eere e aees 23
Sequence diagram for training the WhizBangoooeuuiiiiiiiiii e 24
THE MICA TEDUGOESeeieieii ettt et e et e et e e 25
Tree learnt from CONVErsation WIith USEYuuiiiiiiiii i 26

Chapter 1. Introduction

MICA is atoolkit that makes it easy to build applications that involve different modes of interaction, and
different autonomous agents. MICA stands for Multimodal | nteragent Communication Architecture.

It is being developed by the Smart Internet Technology CRC. It is specifically designed to support the
following features:

» Write applications in such away that the application itself is separated from the interface to that appli-
cation; in this way different interfaces can be written for different modalities. This makes it possible, for
instance, to write an e-mail agent; and then have both a voice interface and a GUI interface to it at once.

» Having the same information accessible across different devices and modalities.

» Maintainenance of state across different devices and modalities so that an interaction started on one device
can quickly be moved to another.

» Combinations of both input modalities from various devices and output modalities.

 Support for learning, by exposing the interactions between agents so that |earning programs can observe
them.

To support these capabilities, MICA:
 Isaplatform for exchange of data that is modality and device independent;

» Provides storage of information and state at a single logical "access point" (information may be physically
distributed but the location should be hidden);

» Requires that communication between agents should be visible to learning agents.

Basic introduction to Mica

MICA uses a blackboard architecture to provide the capabilities discussed above. The blackboard concept
was introduced by Erman et a (1980) in the HEARSAY -1l speech understanding system. Since then, it has
been used in a variety of Al systems and variations of the blackboard have been used to provide rendezvous
mechanisms in multi-agent systems.

In MICA, we extend the blackboard to support:
* distributed execution;

e multiple devices,

* network connection;

* object-oriented storage;

* security and privacy.

Initssimplest form, ablackboard isashared memory. An agent may perform sometask and post itsresultsto
the blackboard. When data of a particular typeiswritten to the blackboard, that event may trigger another agent
into action and this process repeats. The advantage of agents communicating indirectly through the blackboard
isthat they do not have to be aware of each other. Thisisolation makesit possibleto introduce new agents or re-
place existing oneswithout affecting other agents. Furthermore, indirect communication allowstheinformation
going through the blackboard to be observed by third parties, which allows|earning and knowledge acquisition.

IActually, thisis the latest version of the acronym. Previously it used to stand for "Multimodal Internet Conversation Architecture”, but then
it was realised () it wasn't restricted to the internet (b) it wasn't restricted to conversation either. But the name has stuck, in any case.

Introduction

In practice, blackboards have more structure than a simple shared memory. The memory is often divided
into different regions and some agents may be restricted to accessing only certain regions. Blackboards also
commonly include an agenda mechanism for scheduling events.

In MICA, an object-oriented approach is taken to the blackboard; items written to the blackboard have a
particular type. Types may be inherited.

The blackboard is structured as follows:
» Agents connect to the blackboard.
» Agentsregister interests in particular types of objects.
» Agents write objects to the blackboard.
» The blackboard manager advises registered agents of new objects.

» Agents can search blackboards using a query language (in the present implementation, the query language
isbased on SQL).

Generally, there are several types of agents: interface agents, which provide away of interacting with the
system's user, computation agents that provide services such as e-mail, or text-to-speech and environment
agents that report information about the user's context, e.g. GPS trackers. Thereis no formal distinction made
between these types of agents, but it goes some way to showing the variety of different systems that can be
connected to MICA.

Theblackboard providestwo important functions: information storage -- by writing information to the black-
board; and information communication -- by informing other agents when objects are written to the blackboard.
The fact that they are both done using the same mechanism has several advantages. It means that, for exam-
ple, a GPS tracker can report information to the blackboard, even if no one is listening, and later agents can
"track back" through older location information. Agents that connect to a discussion "late" can retrieve state
from before they connected. Agents can also "watch" the blackboard and contribute to the information on the
blackboard -- e.g. learning agents.

Comparing MICA to other systems

MICA can be compared with many other systems; since the problem MICA addresses -- storage and com-
munication, are two of the universal problems in computer science. To help show how MICA fitsin with these
alternatives, it is compared here with existing systems.

MICA as atype of database

MICA can be thought of as a database, in fact, to be accurate, an object-oriented active database. It is
object-oriented, because objects can be stored directly in the database, and active, because active databases
support the execution of code under certain conditions when the database changes. When clients write objects
to the blackboard, this can be thought of as writing a record to atable in a database. Similarly for reading,
deleting and querying.

The important differenceis the way that MICA conveys information about changes to the database to inter-
ested third parties; who wish to be informed about whatever changes occur to a database.

There are to our knowledge, no active object-oriented databases particularly ones that communicate infor-
mation of changes to the database.

MICA as a Publish/Subscribe Model

Another way to think of MICA isasapublish/subscribe model of interaction (like the InfoBus architecture),
or an Observer pattern in languages like Java or as a content-based routing system (such as elvin).

Introduction

The main difference between MICA and such systems is that MICA integrates storage into such an archi-
tecture. Though this change seems small, it does actually have some significant implications.

MICA as a web service and/or RMI and/or RPC

The popularity of XML-based web services has increased dramatically over the last few years; but really
they are examples of general remote procedure calls systems.

The main differences compared to MICA are that these systems are "one-way" -- queries are launched by
clients to the server, and the client gets a response; and secondly, that there is no inherent storage capability
built in -- though it would be possible to build one.

Having said that, it would be possible to implement MICA as a two-way web service. It would be messy,
but possible.

MICA compared to CORBA

CORBA could be used to implement a MICA service; however, CORBA is incredibly complex and this
would be like implementing a simple counter with a Pentium processor. Further, though the protocol supports
more advanced forms of interaction than the client-server protocol mentioned above, such features are rarely
implemented in CORBA systems.

MICA as an agent architecture

MICA can be considered atype of agent architecture. Compared to most other agent architectures, however,
itis much simpler. MICA islike an agent architecture where the only elements allowed in the agent commu-
nication language are objects.

Having said that, it is easy to interface non-MICA agents to MICA. For comparison, we compare it to a
popular agent architecture: SRI's Open Agent Architecture.

In many ways, MICA isasimplified form of OAA. MICA could be implemented using OAA, but it would
be like trying to build a lower level abstraction on a higher one -- possible, but for serious work, you want a
clean implementation. There are also afew other differencesin security and data model.

OAA hasa"facilitator" agent that manages interaction between different agents. In MICA, thisisthe black-
board manager. OAA usesthe idea of "solvables'-- things or queries that can be resolved. So an agent in OAA
saysthat it providesacertain solvableto thefacilitator. In MICA, solvables correspond pretty closely to objects.
In MICA, an agent tells the blackboard to inform it of particular objectsit isinterested in.

The main differences are:

» MICA has no backtracking across agents to solve problems; whereasin OAA, you can post compound goals
to the facilitator, which will then employ depth-first and/or breadth-first search to fulfill those goals. For
example, in OAA, if you tried to make an enquiry like "Get me Bill Smith's manager's phone number" you
could say:

oaa_sol ve(manager ("Bill Smith",M,fax(MR))

Figure 1.1. A typical OAA query

(Risthereturn value here, and M is an "intermediate” variable) The "manager" solvable might be handled
by one agent, and the "fax" solvable might be handled by two different agents, each with access to different
fax numbers. Backtracking would allow thisto be done seamlessly.

» OAA's security model is agent-based; ie. "only the agents | specify can use my solvables'. MICA's is ob-
ject-based, i.e. "this particular object should not be visibleto thisagent". The blackboard manager in inform-
ing agents or responding to their queries, hasapolicy expressed as afunction of the agent to which the object
isto be delivered and the object itself.

Introduction

» MICA usesobject inheritance to model objects on the blackboard; OAA can use any data structure supported
by ICL (whichisbasically Prolog).

» OAA uses"procedura solvables' and "datasolvables' -- the MICA equivalent for both of theseisan Object.

» OAA gpecifiesfour different types of triggers: datatriggers (tell mefact X), communication triggers (tell me
when agent X talksto agent Y about Z), timed triggers (tell me every 5 seconds) and task triggers (tell me
when someone wants to do X). MICA has one trigger only: tell me when an class X or one of its subclasses
appears on the blackboard.

The manual

The remainder of thismanual is designed to help users get started with MICA. It beginswith a quick outline
of the MICA design, before discussing the prototype implementation. It then walks through the code in order
to build a smple MICA agent for implementing a shared notepad. A more complicated example, with five
interacting agents, is then demonstrated.

Chapter 2. The MICA Design

Basic entities

The MICA system consists of several entities; and it istheir interplay and coordination that makesit useful.
There areredly only three basic entities used in the MICA design:

The Blackboard

The blackboard is the core of MICA. An analogy can be made in the case of the blackboard to the old
switchesthat used to be employed to handle telephone calls. The blackboard is similar to a switch with memory
-- facts can also be stored on the blackboard. But all interactions between agents flow through the blackboard,
in much the same way that all phone callsin atown go through a switch.

Much of the power of the blackboard comes from its ability to alow many agentsto share information. It is
expected, that in use, there would be one blackboard for each person. All agents and servicesrelated to that user
would execute through the blackboard. It is also expected that forum blackboards, for groups of individuals,
could a'so be created.

Agents

Agents are entities that wish to access and contribute to the information on the blackboard. As previously
mentioed, there are several types of agents, but to the blackboard, they al ook the same.

Agents take many shapes and forms. It may be a complex GUI running on a person's desktop computer,
or it may be a proxy for an incoming call over the phone system. It may even be a physical device. It may be
autonomous, with full reasoning and deliberative capabilities, or it may be asimple "time" agent, which writes
"time" objectsto the blackboard every ten seconds.

Agents connect to the blackboard. Once connected, clients can do several things:

» Write something to the blackboard.

» Read something from the blackboard.

* Query objects on the blackboard.

* Register interests for new things written on the blackboard. When a new thing -- of interest to the agent
-- iswritten to the blackboard, the agent isinformed of its arrival.

MICA Objects

MICA Objects (or mobsfor short) are the basic unit of information in MICA. Mobs arethe thingsthat clients
actually read and write from the blackboard.

Mobs are similar to objects in an object-oriented programming language. They have the following charac-
teristics:
» Name: Each mob hasaname, which isunique. Mobs are named when they arefirst written to the blackboard.
The name isastring.

» Type: Each mob has atype. Much like an object-oriented programming language, types can inherit from one
another. MICA's type system is discussed in greater detail |ater.

» Yots: Slots are similar to fields in object-oriented oriented programming; with one small exception: slots
can have alist of values associated with them. Each slot has a name, and alist of values associated with it.

The MICA Design

Typically, each type has one or more slots associated with it. Subtypes will typically have the dots of the
base type, but will typically have additional slots.

A simple example of amob isthe shar edPadLi ne type used in the sharedPad demo (which is discussed
in Chapter 5). It hasfour slotsfor each of the propertiesof aline: ol dX, ol dY, newX, newY.Inthiscase,
each dot only has asingle value. A subtype might be col our edPadLi ne that in addition to the slots for a
shar edPadLi ne above, also hasadot col our to describe the colour of theline.

Putting the pieces together

A valid question is how do all these pieces fit together. Figure 2.1 shows what this looks like.

Agent 2 Agent 1 Blackboard
! ¢
Blackboard
Agent Transport Transport
Transport Medium

Y
Agent Transport
Transport < Medium

Figure2.1. How MICA components ar e connected

In the Figure 2.1, the arrows represent conduits for messages. These messages are requests that do things
such asrequest that an obj ect be written to the blackboard, or that an agent beinformed that anewly created mob.

Thediagram showstwo agents connected to one blackboard. Typically, there would be more than two agents
connected, but two are the minimum number for any interesting application. Agents and blackboards do not
communicate directly, but through a transport layer. This allows implementations of MICA to use different
transport layers. For example, some possible transport layers are: local function calls, XML over a TCP/IP
connection, some proprietary encrypted protocol, or ASCII messages over Bluetooth. For each one of these,
apair of classes -- an agent transport and a blackboard transport -- need to be developed. Agents talk to the
Agent Transport layer through method calls; and likewise for the Blackboard.

The advantage of doing things in this way is that it gives a lot of flexibility in the domain MICA can be
applied to; and allows devel opers to write agents that do not need to be aware of the underlying transport layer.

In order to clarify how requests are passed, consider what happens when Agent 1 writes amob to the black-
board, which is of type Message. Also assume that Agent 2 has registered for any mobs whose typeis Mes-
sage. Agent 1 would create the mob and call an appropriate method in its agent transport. The agent transport
would deliver it to the blackboard transport (using whatever transport medium was appropriate). The black-
board transport would do two things: firstly, it would give a name to the maob; say Message_0, and inform
Agent 1 -- through Agent 1's transport -- of the new mob's name. Secondly, since Agent 2 was registered for
mobs of type Message, the blackboard would send a message to Agent 2's transport, that there was a new
mob called Message_0 with certain slots. Agent 2's transport would then call amethod in Agent 2 to handle
the newly arrived Mab.

Note the following:

The MICA Design

Neither Agent 1 nor Agent 2 are explicitly aware of one another.

Many different agents can register for mobs of a given type. There could be a dozen agents connected to the
blackboard, and if six of them were registered for Messages, then al six of them would get it.

The arrows are "two way" arrows. At times the blackboard will initiate communication with an agent, and
at other times, it will be the other way around.

Agents can register for mobs of any type, and they will be informed if mobs of that type or any sub-type
are written to the blackboard. For example, if Shor t Message was a subtype of Message, and someone
wrote amob of type Shor t Message to the blackboard, Agent 2 would still be informed.

Chapter 3. Installing and running
MICA

Getting MICA

MICA is currently CRC internal software; so the usual delivery mechanism at this point in time is viaan
e-mail attachment.

MICA requirements

MICA should run on any system that supports JDK1.3 or better. It is most extensively tested on Windows
XP, but is also tested on Linux Redhat 9 systems.

Installing MICA

Toinstall MICA, take the tar.gz (where version is the current version) file and use the following commands
tounzipit:

% jar xvfz mica-2.0-{version}.jar

This sets up a subdirectory mica-2.0-{version} that contains al the mica files and documentation. Y ou
should move into that directory. The next step that needs to be completed is that the classpath must be set up.
Y ou should add the following jar filesto your classpath (all from the jars directory):

e hsql db.jar

e mca.jar

» weka. j ar (optional: only necessary for supporting the LearningAgent)

e framescri pt.jar (optiona: only necessary for supporting the WhizBang demo)

Exactly how you do this depends on your operating system. For example, under Windows, it can be done
using (excluding the optional jars, don't forget to include them if you need them):

set CLASSPATH=jarsghsgldb.jar;jarsmicajar

Under bash (e.g. Linux or MacQS) it might be;

export CLASSPATH=jarghsgldb.jar:jarsmicajar

Once you have set up the classpath, you can now start the MicaRunner. MicaRunner is a graphical user

interface that allows the blackboard and the agents to be started independently. A picture of the MicaRunner
isshown in figure Figure 3.1.

Installing and running MICA

£ MicaRunner E|@|g|
Blackboard | Start Al | | Terminate All | | Save Current | | Save All | | Clear Current | | Clear All | | Exit |
(Blackhoard | Debugger | Pad1 | Pad2 | MobMaker2 |
.'.'. stop| |Tue Dec 13 13:06:17 EST 2005: BlackboardHandler: Starting new blackboard process with args: [-home=. -port=8500 -de
bug=10-catch -typePath=configiype dbPath=datafhlackhoard -persistent]
=PROCESS= initialising
Debugger Tue Dec 13 13:06:18 EST 2005 Here are the tables: null
=PROCESS= initialised
... Tue Dec 13130619 EST 20048: ProcessinputiatcherThread(Blackboard): Starting watch.
start
Pad1
009 .
Pad2
009 -
MobMaker2
009 .-

Figure 3.1. MicaRunner window

MicaRunner takes afilethat tellsit which agentsit should load. In this particular case, in the micadirectory,
afilecalled shar edpad- r un. xm specifies which agents to load. MicaRunner can be run by typing:

% java unsw.cse.mica.runner.MicaRunner examples/run/sharedpad-run.xml

Once loaded, hit the "Start all" button to start the agents. Y ou should now see atotal of three windows (they
may actually be overlapping, so movethem asappropriate). For the moment, put the"MicaBlackboard Display”
window aside, and just move the Shared Pad windows into a convenient place. Drawing in one window should
lead to lines appearing in the opposite window and vice versa. In this case, both of the SharedPad windows are
clientsthat connect to the blackboard. When you drag the mouse in either window, then the client creates amob
with a description of the line and writesit to the blackboard. Since SharedPad clients register their interestsin
lines, both clients are informed of the newly added line and draw it on their canvases. If you now look at the
"Mica Blackboard Display" window, and click on the "MICA Objects’ node, there isa complete list of all the
Mabs that have been written on the blackboard.

A more detailed look

Let'shavealook at shar edpad- run. xm inalittle more detail:

Installing and running MICA

<runner >

<host nane="I| ocal host"/>

<port number="8500"/>

<pos x="0" y="0" />

<si ze wi dt h="800" hei ght ="500" />
<catch val ue="fal se" />

<bl ackboar d/ >

<agent class="unsw. cse. m ca.t ool s. Debugger">
<needs nane="bl ackboard"/ >
<arg paran¥"scrol|l" value="true" />
<arg paran¥"x" val ue="0" />
<arg paran¥"y" val ue="500" />
<arg paran¥"w dt h" val ue="500" />
<arg paran¥"hei ght" val ue="400" />
</ agent >

<agent cl ass="unsw. cse. m ca. deno. Shar edPad" nane="Padl" >
<needs nane="bl ackboard"/ >
</ agent >

<agent cl ass="unsw. cse. m ca. deno. Shar edPad" nane="Pad2">
<needs nane="bl ackboard"/ >

</ agent >

<agent class="unsw. cse. m ca.tool s. MobMaker 2" >
<needs nane="bl ackboard"/ >
<arg paran¥"x" val ue="500" />
<arg paran¥"y" val ue="500" />
<arg paran¥"w dt h" val ue="300" />
<arg paran¥"hei ght" val ue="400" />

</ agent >

</ runner>

Figure 3.2. shar edpad- r un. xm

The first line of Figure 3.2 declares that the file is a runner file. the next two lines specify the particular
blackboard to connect to, in this case the current machine running on port 8500. Specificationsare also be given
for the location for the position of the runner window, using the . Thisis followed by the specification of the
blackboard. In this particular case, the blackboard does not try to restore the information on the blackboard
from the last timeit ran, and it also specifies the amount of debugging information that is given.

The others are entries for individual agents. The first is for the debugger tool (that allows you to see what's
on the blackboard). The second and third are two instances of the SharedPad.

The Shared Pads need not run on the same computer as the blackboard. If you had two computers and in-
stalled MICA on both, then you could have Shared Pads running on different machines, with adlightly differ-
ent version of the shar edpad- r un. xm file (i.e., without the blackboard tag, and with arunner tag that
pointed to the appropriate remote blackboard). Nor are you limited to only two, you could have as many shared
pads as you liked.

More documentation on MicaRunner can be found in the APl documentation, and more examples of the
kinds of thingsthat go in arun file can be seen in the exanpl es/ r un folder of the mica distribution.

10

Chapter 4. The MICA implementation

Parts

MICA isimplemented in Java. It consists of anumber of packages. But when you get down to it, for imple-
menting agents, there are only a few classes that matter:Agent, Agent Transport, XM.Over TCPA-
gent Tr ansport fromtheunsw. cse. m ca. agent package; Mob from theunsw. cse. mi ca. dat a
package; Bl ackboard, SQLBl ackboard and XM.Over TCPBI ackboar dTr ansport from the
unsw. cse. m ca. bl ackboar d package. Also of use may be the Def aul t Agent , Def aul t Agent 2
and GUI Agent classes, which provide various partial implementations of an agent.

All of these classes have extensive Java documentation, so you may also wish to examine the javadocs that
areincluded with MICA.

A quick walk through the MICA API

There are several important classes that make up the MICA implementation; in this section, we will go
through the most important classes and their methods.

unsw. cse. m ca. dat a. Mbb

The Mob is the basic unit of information storage and communication in MICA. As previously mentioned,
each Mob has a name, a type and a set of slots that define it. Let's have alook at two real Mobs (as output
by itst oSt ri ng() method).

Mob shar edPadLi ne_103 of type sharedPadLi ne has sl ots:
creationTine: [2003-08-07 12:13:21. 246]
creator: [sharedPad_1]

ol dX: [69]
ol dY: [151]
newX: [68]
newy: [151]

Figure4.1. A ssimplemob

In the above code, the mob'snameisshar edPadLi ne_103 (aname that was allocated when this object
was written to the blackboard) and its type is shar edPadLi ne. It has six dlots, but al of the slots have a
singlevalue. Let's ook at a more complex example.

Mob enmmi |l Li stReply_12 of type enmmil ListReply has slots:
creationTinme: [2003-07-31 16:01: 02. 24]
creator: [enmil Agent]
from [wal eed@se. unsw. edu. au, foo@ar.com bar @az.conj
subject: [Wiat's up?, Bugs in M CA Roneo and Juliet screening]
count: [3]

Figure4.2. A more complex Mob

Figure 4.2 shows slots containing multiple values. The current implementation allows only Strings to be
storedin dots, but thisisstill avery flexible representation. For example, referencesto other mobs and complex
data structures can be constructed using slots that contain references to other Mobs. Similarly, binary data can
be stored using base-64 encoding.

The methods for mobs are consequently related to constructing a Mob. Basically, there are severa families
of methods. The complete documentation can be found in the java documentation.

11

The MICA implementation

e Constructors: Thetypical constructor used to make aMob isthe Mob(St ri ng nobType) method. This
creates a new Mob of the specified type, but with an undefined name and no slots. Typically, the Mob has
no name until aname is actually given to the Mob by writing it on the blackboard.

» Setting up slots: There are a number of functionsto set up slots. set Sl ot (St ri ng sl ot Nane, Li st
sl ot Val ues) allowsyou to set up aslot with al of itsvalues, whileaddSl ot (Stri ng sl ot Nane,
String sl ot Val ue) allowsyoutoaddanew valuetoaslot.addEnpt ySl ot (St ri ng sl ot Nane)
alows you to set up adot that has no valuesiniit.

» Getting valuesfromslots: Therearetwo primary methodsfor getting valuesfrom dots: get Sl ot (Stri ng
sl ot Nane) getsal thelist of valuesfor adot, but since thereisavery common case where thelist contain
asingle value, thereis dso the get Sl ot 1(St rong sl ot Nane) which returns a single String, rather
than an entirelist. To get aslot value as an integer, useget Sl ot 1Asl nt (String sl ot Nane).

Transience

On occassion, you want to use MICA merely as atraditional publish/subscribe mechanism, i.e. you do not
want to save the mob you are writing on the blackboard, you just want that mov delivered to anyone who is
interested. Such mobs can be labelled as transient. Transient mobs are not stored on the blackboard, but other
agents interested in the mobs are notified. To mark amob astransient, use the makeTr ansi ent () method.

Note that as of Mica 2.0, transience can also be defined using the type manager. If a type is specified in
this way, the blackboard will ensure that all Mobs of that type are transient, so agents creating these mobs are
not required to do so.

Reserved slot names

The following slot hames are reserved and are used by the system: creator, creationTi ne,
del eter, deletionTine and persi st ence. Setting these slot names can lead to unexpected events
and should be avoided.

unsw. cse. m ca. agent . Agent Tr anspor t

Agent Tr ansport isan interface that represents a connection to the blackboard. As such, the Agent -
Transport istheonly "view" that the agent actually gets of the blackboard. For this reason, the Agent -
Transport encapsulatesall thefunctionality of the board. Whenever an agent wantsto communicate with the
blackboard it does so through the agent transport. Similarly, whenever the agent transport receivesinformation
about a new mob, thisis passed from the agent transport to the agent.

Because the Agent Tr ansport isa proxy for the blackboard, all its methods are basically proxy com-
mands that are forwarded to the blackboard. These are:

» Connection commands: connect (St ri ng agent Nanme) and di sconnect () are used to connect to
the blackboard. connect () returns the agent name that was given to the agent. The agent can request a
particular name, but this may not be granted since another agent with this name may already exist. di s-
connect () obviously disconnects from the blackboard.

* Getting type information from the blackboard: Agents can access the blackboard's type manager using the
get TypeManager () command.

* Registering and unregistering: Registering istheway that you let the blackboard know that you are interested
inobjectsof aparticular type. For instance, if an agentisinterestedinlines, it registersfor shar edPadLi ne
mobs. Whenever ashar edPadLi ne mob iswritten to the blackboard, the agent is sent a copy of the new
mob. To register, ther egi ster (Stri ng nobType) can be used. Similarly, if an agent is no longer
interested in shar edPadLi nesanymore, it unregisterswithunr egi ster (Stri ng nobType)

» Writing things on the blackboard: To write on the blackboard, wr i t eMbb(Mob m) canbeused. wri t e-
Mob returnsthe namethat the object isfinally given. The blackboard then handlesthe forwarding of thismes-
sage to anyone who isinterested -- the agent need not concern itself with how the information is distributed.

12

The MICA implementation

 Deleting mobs fromthe blackboard: del et eMbb(St ri ng nobNane) can be used to delete information
from the blackboard. However, this should be done very carefully, since other mobs may refer to the mob.

» Getting mob information from the blackboard: To retrieve information from the blackboard, one can use
readMbb(St ri ng nmobNane) if the name of the mab isknown or nrobSear ch(Stri ng m caQue-
ry) if amob with particular properties is sought. For a description of the query language, see the section
called “The MICA query language”. mobSear ch will return all mobs that have the desired properties.

Mca V2 provides two primary inplementations of the AgentTransport in-
terface:

» LocalAgentTranport provides adirect programmatic connection between the agent's transport and the black-
board transport. Note that thisimplementation has not been thoroughly tested.

» CompoundTr ansport combines a connection type (Agent Connect i on) with a protocol (Agent -
Pr ot ocol) to create a versatile component-based transport system. Currently available connection types
areLocal Agent Connect i on and TCPAgent Connect i on, while the only protocol currently imple-
mented is XMLAgent Pr ot ocol .

o XMLOver TCPAgent Tr anspor t sendssnippetsof XML over aTCP network connection. Thisisthe most
frequently used transport method, so much so that a new class has been created to simplify the process of
creating this transport type. Currently thisis the only type of transport used by MicaRunner.

unsw. cse. ni ca. agent . Agent

Agent encapsulates a single autonomous unit for doing computation on the blackboard. It is implemented
as an interface. Implementing an agent consists of writing seven methods; and Def aul t Agent provides a
reasonable default for most of those.

» set Agent Transport (Agent Tr ansport at) andget Agent Tr ansport () areused so that the
agent can redirect callsto the blackboard through the appropriate agent. Def aul t Agent providesadefault
for these two methods. In general, Def aul t Agent should be extended, but in some cases it is more con-
venient to implement Agent so that the agent itself can inherit from another class.

 init(M caProperties): Thismethod is called to start the agent operating. It is actually called by the
Agent Tr ansport (seethe section below). Note that thei ni t () method should return quickly; in par-
ticular, the agent transport should not start sending messages until i ni t () returns. If some complicated
execution takes place, it should be done in another thread. Also note that thei ni t () method takes a Mi-
caProperties object; these are usually extracted from the startup file; but it provides a generic mechanism for
passing configuration info to the agent.

» term nat e(): Thismethod iscalled to stop the agent operating. It istypicaly called by the MicaRunner.

* handl eNewivbb(Mbb m This method is called whenever aMob we are registered for arrives.

* handl eDel et edMbb(Mob n) This method is called whenever a Mob we are registered for is deleted.
The mob being deleted isincluded. Thisis useful, asthis gives us alast opportunity to make alocal copy of
the Mob. If you inherit from Def aul t Agent , thereis a default implementation that does nothing.

» handl eTypeManager Changed() this method is called whenever the blackboard's type manager
changes. The defaul isto do nothing.

That'sit! Atitscore, toimplement most agentsrequireswritingthethei ni t andhandl eNewivbb methods.

Def aul t Agent 2 providesadditional functionaliy over Def aul t Agent , including transport connection
and disconnection, and providing a type manager that is kept up-to-date with the blackboard's type manager.
GUI Agent extends this further to provide skeleton support for an agent needing a GUI. It ensures that termi-
nating the agent closes the GUI and vice-versa.

13

The MICA implementation

Setting up Agents and Agent Transports

The following section discusses how agents and agents are set up. However, if you use the M caRunner
tool, you need not concern yourself with such details; it handles the setting up of agents and agent transports.
On first reading, this section can be glossed over.

Becausethe Agent andthe Agent Tr ansport haveacloserelationship and each can call the other, there
are afew special hoops that have to be jumped through in order to get them to work together. Thisis because
each need to know about the other, so it'stricky to set this up with constructors and the like. The stepsinvolved
are:

» Construct the Agent .

» Construct the Agent Tr anspor t, but ensure one of the parameters is the the Agent constructed in the
previous step.

* Intheconstructor of Agent Tr ansport call themethod Agent . set Tr ansport (Agent Tr ansport
at) . Thisletsthe agent know what its transport is.

» When the agent isready to go, call themethod Agent . i ni t () Thisistypically the point in the code when
the agent will connect to the blackboard using, say, an Agent Tr ansport. connect () cal.

The MICA type system

MICA's type system -- the way that different objects are represented -- is similar to many object-oriented
systems. As previously discussed, objects have atype; and types can inherit from one another. Each type typ-
ically has certain slots associated with it. Each slot can have alist of values.

The current implementation of MICA issimple. Firstly, slots can currently only have valuesthat are Strings.
Ideally, it would be useful to have slots that can have other types, e.g. ints, doubles, and so on'. Secondly,
although it would be typical for a particular type to have particular slots, thisis not enforced in any way. For
example, consider the shar edPadLi ne mob in Figure 4.1. Although we expect that a sharedPadLine would
have the six slots shown, it is perfectly possible to construct ashar edPadLi ne that hasno ol dX dlot.

MICA supports multiple inheritance: a given type can have several superclasses. Unlike languages like
Smalltalk where each object can have multiple types, however, a single mob can only have one type; although
any type may have several supertypes.

To simplify management, there is a universal supertype, called "mob". Every type is assumed to inherit
from "mob". When an object is created on the blackboard, the blackboard also creates two slots, each with a
singlevalue: cr eat i onTi ne, thetime at which the agent was created; and cr eat or , the agent that created
a particular mob.

It isalsoimportant to note that the registration system heedsinheritance; in other words, if an agent registers
for amob of a given type, the agent is informed if any subtype is also written to the blackboard. Thisis an
extremely important feature. For example, it makes writing a "debugger" agent that displays everything on
the blackboard very easy. All the agent need do is register for any mobs that are of type "maob" and it will be
informed of any mob written to the blackboard. Similarly, say some kind of complex agent has awhole family
of mob typesthat it hasto listen to. If al the mobs inherit from a common type, then it is easy to register for
awhole family of mobsin asingle go.

A further use of the type hierarchy is as a way of specifying transience. Although individual mobs can be
specified astransient by the makeTransient method, it is often the case that all mobs of aparticular type will be
transient. If amob type is specified as transient then all mobs of that type will be automaticlly made transient
by the blackboard. This feature also obeys type inheritance, so that if some typeis declared transient, all type
inheriting from it will also be transient.

One particularly useful type would be a reference to another Mob. However, similar functionality can be achieved by using the name of the
mob and storing it in aslot as a string, and then using ther eadMbb(') method to find the useful information.

14

The MICA implementation

Using the Blackboard

Agents never directly see the blackboard, but only the AgentTransport. Thus, the interaction of most agents
and the blackboard are limited. Usually, all that the developer needs to know what to do with the blackboard
isto learn how to start and stop it.

The simplest way to start a blackboard is via MicaRunner. Simply adding a blackboard tag to the runner
XML configuration file will provide support for a blackboard running on the local machine.

The dternative is to start a blackboard manually from the command line. For an SQL Blackboard with a
XML-over-TCP transport, thisis simply done using the XM_Over TCPBI ackboar d class:

% java unsw.cse.mica.blackboard. XML Over TCPBlackboard

This starts a blackboard transport at port 8500 on the local host, with all the default settings. The default
settings can be overridden using the following command-line parameters:

» -port=PORT specifies an alterative port number to use
» -micaHome=DIR specifies an alternative home directory for mica

» -typePath=DIR specifies an aternative directory (relative to the micaHome directory) to search for type
specification files

» -dbPath=DIR specifies an alternative directory (relative to the micaHome directory) to use for the SQL
database

» -persistent=BOOL EAN specifies whether or not the blackboards should attempt to load stored mobs on
entry or save them on exit.

Configuring MICA

Agents can be configured by using the arg in the XML run files. Any such tags are passed to thei ni t ()
method through a MicaPr operties object. An example of a complex snippet of a MicaRunner XML file that
shows an agent that takes multiple parameters is shown in figure Figure 4.3. These can be accessed through
the methods of theM caPr oper ti es class. Note that multiple parameters with different values are allowed;
in this case to load different filesinto MicaBot.

<agent class="unsw. cse.framescript.m ca. M caBot">
<arg paran¥"file" value="scripts/systemmca.frs"/>
<arg paran¥"file" value="scripts/nunbers.frs"/>
<arg paran¥"topic" value="all"/>
<arg paran¥"init" value="init"/>
<debug | evel ="information"/>

</ agent >

Figure4.3. A MicaRunner XML file snippet with complex arguments

Also note that the MicaRunner file supports ahome element so that you can choose the directory that MICA
isinstaled in. Thisisif you want to run agents in another directory. The MICA home directory is used for
several purposes, namely to load data from conf i g/ t ype folder related to types (the Learner Agent also
usestheconfi g/ | ear nt ask folder to load learning tasks). The dat a folder from the micahome directory
is also used to store temporary objects, like blackboard datafiles, or learnt concepts.

Giving information about types

The current implementation of MICA uses types that are read in at the beginning of the blackboard's exe-
cution. Future versions are likely to alow types and inheritance to be defined dynamically. But for now, on

15

The MICA implementation

startup, any xml filesin the type directory (normally conf i g/ t ype) are read in to define the hierarchy. Fig-
ure 4.4 shows atypical type definition file, for the problem of defining a hierarchy of shapes.

<t ypedesc>
<nobdecl name="object"/>
<nobdecl nanme="shape">
<parent name="object"/>
</ nobdecl >
<nobdecl name="pol ygon">
<parent nanme="shape"/ >
</ nobdecl >
<nmobdecl name="rectangl e">
<parent nanme="shape"/ >
</ nobdecl >
<nmobdecl nanme="circle">
<parent nanme="shape"/ >
</ nobdecl >
<nobdecl nanme="square">
<parent nanme="rectangle"/>
<par ent name="pol ygon"/>
</ nobdecl >
</typedesc>

Figure4.4. shapes. xni

As can be seen, each type declaration consists of a description of amob, and then its parents. For example,
ci rcl e inheritsfrom shape, and squar e inheritsfrom bothr ect angl e and pol ygon. If atypeisto be
defined astransient, simply add the attribute per si st ence="t r ansi ent " tothedeclaration. For example,
to make al the typesin the above example transient, define the object typeas<mobdecl nane="obj ect"
persi stence="transient" />,

The MICA query language

The MICA query system takes advantages of the storage mechanism used by MICA. MICA uses HSQLDB
as a database store in which it places al of the MICA objects. MICA's query language takes advantage of the
HSQL interface. Without going in to too much detail, MICA objectsresidein a SQL table with three columns:
the name of the abject, the type of the object and the object itself.

To use the MICA Query language, norma SQL has been enhanced with the following functions that are
applicable to mobs. They closely mirror the methods that are availableto theunsw. cse. mi ca. dat a. Mob
class.

» typeof (nmob, 'type') alowsyou to check thetype of an object. This mthod returns a boolean.
* hassl ot (nob, ' sl otNanme') alowsyou to check whether amob has a particular slot or not.

» getslotl(nob, 'slotNane') getsthefirst vaueof adlot. It returnsastring. There aretwo further
versions of this method, get sl ot 1asi nt and get sl ot 1asdbl to get the first value in a dlot as an

integer and double respectively.

» getslotn(nob, ' sl ot Nane' , pos) isauseful method for getting arbitrary information fromamul-
ti-valued slot.

e contai ns(nmob, 'slotNane', 'value') alowsyou to check whether amob has a particular

value stored somewhere in amulti-valued slot.

Example uses

In order to use the system, consider the following examples that actually occur in the MICA codebase.

16

The MICA implementation

Getting all Mobs on the blackboard
To get all mobs from the blackboard, you can use:

select * from mobs

Getting all mobs of a particular type
To get all mobs of a particular type from the blackboard (including subtypes) you could use:
select * from mobs where typeof (mob, 'sharedPadObject’)

Thiswould retrieve al sharedPadObjects (sharedPadLines, sharedPadRectangles, etc) from the blackboard.

Selecting the order of objects
To get Mobsin a particular order, you can use the "order by" command, for example

select * from mobs where typeOf(mob, ‘sharedPadObject’) order by getSlotl(mab, ‘cre-
ationTime)

"asc" and "desc" could be appended to get things in ascending or descending order, respectively.
Getting the first of alist of mobs
If we wanted the most recent sharedPadObject, this could be achieved as follows:

select top 1 * from mobs where typeof(mob, 'sharedPadObject’) order by getslot1l(mab,
‘creationTime') desc

Finding Mobs with certain properties
If we wanted to find amob with particular properties, this could be tested, for example, as follows:
select * from mobs where contains(maob, 'creator’, 'myAgentName')
The same thing could be accomplished using
select * from mobs where getslotl(mob, ‘creator’) = ‘myAgentName'

(assuming, of course, that the 'creator’ dlot is single-valued).

17

Chapter 5. A simple client:
Shar edPad

Shar edPad is an agent that illustrates the basics of writing aMICA agent. This chapter includes a walk-
through of the MICA-related code that isin Shar edPad.

SharedPad allows any number of connected agents to share a single notepad and to draw on it using a
mouse and/or stylus. Anything drawn on one shared pad is shared amongst the other pads. In addition, state is
preserved, so that even if every shared pad disconnects, all the information is kept.

SharedPad uses a single type of Mob: shar edPadLi ne. As previously discussed, it has four fields that
represent the start and end points of aline:

As mentioned previoudly, there are two interesting methods that need to be implemented for an agent:
i nit() andhandl eMob().init () iscaled--typically by mai n() to start the agent.

public void init(McaProperties nmp) throws M caException {
at . connect (" shar edPad") ;
Li st exi stingLi nes
= at.nobSearch("select mfrom min sharedPadLi ne;");

for(lterator i = existingLines.iterator(); i.hasNext();) {
dr awShar edLi ne((Mob) i.next());

}

at . regi ster("sharedPadLi ne");

Figure5.1. Thei ni t () method for Shar edPad

The first thing that the agent does is connect to the blackboard. To do this, it uses at , which is afield that
stores the agent transport. By caling at . connect (" shar edPad") , the agent connects to the blackboard
and requests that it should be called sharedPad.

Once connected, wequery for all existing linesonthe blackboard. Thisisuseful, sinceif someone hasalready
started drawing, it allows the retrieval of existing doodles. The query uses MicaQL, a simple query language.
The above statement says: get all objects m from the blackboard, whose type is sharedPadL ine. For each mab,
we then use the method dr awShar edLi ne() todraw it. dr awShar edLi ne() isoutlined below.

Finally, once we have obtained all the existing data, we now register for any new shar edPadLi ne mobs
that are written to the blackboard, using theat . r egi st er () cal.

The above method called dr awShar edLi ne() , which isused to actually draw it on to the screen.

public void drawSharedLi ne(Mb n) {
drawnLi nes. add(n ;
int startX = mgetSlot1Asint("oldX"));
int startY = mgetSlotlAsint("oldY"));
int endX = magetSlotlAslnt("newxX"));
int endY = mgetSlotlAslnt("newy"));
Graphics g = get Gaphics();
g.drawLi ne(start X, startyY, endX endY);
}

Figure5.2. Thedr awShar edLi ne() method for Shar edPad
dr awShar edLi ne() isan example of how the information stored in a mob can be extracted and used.

Firstly, the mob is added to alist of drawn lines -- thisisn't for any reason related to the blackboard, but simply
so that if our sharedPad window gets covered by other GUI applications we can do an redraw easily. The next

18

A simple client; SharedPad

four lines extract data from the mob; each converting it into an integer. Notethat weuseget Sl ot 1Asl nt ()
in this case, since we only want one value for each slot and we want it to be returned as an integer. Finally we
obtain the graphics context and draw the line based on the information we extracted from the mob.

The other major method an agent must defineishandl eNewivbb() .

public void handl eNewMob(Mb m) {
i f(m getType().equal s("sharedPadLi ne")){
dr awShar edLi ne(nj ;
}
}

Figure5.3. Thehandl eMob() method for Shar edPad

The code first checksto seeif the type of thereceived mob isashar edPadLi ne. Strictly speaking thisis
unnecessary, sinceshar edPadLi nes aretheonly typethat isregistered for. Onceanew shar edPadLi ne
isreceived, it isdrawn, just like the lines that were retrieved from the blackboard initialy.

All the functionality now required to implement the drawing of lines already on the blackboard is now
complete. This code is now sufficient (together with the supporting Swing and Java boilerplate code) for im-
plementing a passive sharedPad that watches while other sharedPad agents connected to the blackboard draw.
What remains is the functionality to write to the blackboard.

Thisisimplemented by having sharedPad object have aMouseDr aglLi st ener . Every time the mouseis
dragged, it calls the following newLine() method:

public void newLine(int oldX, int oldY, int newX, int newY) ({
Mob m = new Mb("shar edPadLi ne");
m addSl ot ("ol dX", String.val ued (ol dX));
m addSl ot ("ol dY", String.val ued (ol dy));
m addSl ot (" newX", String.val ued (newX));
m addSl ot (" newY", String.val ued (newy));
at.witeMb(n;

}
Figure5.4. ThenewLi ne() method for Shar edPad

The parameters passed to newLi ne() are used to construct the appropriate mob. For each of the four
values, we add a slot, and set the value of the slot to a string value. Finaly, once it is al finished; the newly
constructed mob is written to the blackboard through the agent transport at .

Once all these components have been put together, with the remainder of the Swing code; we now have an
Agent that can share information and retain state. As can be seen, the code isrelatively smple.

Oneinteresting note isthat agiven Shar edPad does not have a concept of a"local” and "remote” ling; so
much so that when a user drags the mouse, alineis not drawn locally; instead the agent just listens for generic
shar edPadLi ne mobs, some of which may have been its own! It would be possible to immediately draw
aline as soon as the mouse is dragged and then ignore mobs which was created by the agent itself; indeed,
thiswould lead to the user experiencing a " snappier" response. This was not donein this case for two reasons:
(a) it would complicate the code, (b) it is useful to experience the "round-trip time" of going to and from the
blackboard to decide if MICA is suitable for "real-time" interaction.

19

Chapter 6. A collection of clients: the
mail reading application

While Shar edPad was asingle client, many applications using MICA have severa clientsinvolved in the
process. In this chapter we discuss the mail reading application, which involves four different MICA clients: a
learning agent, an e-mail agent, a user interaction agent, anatural language processing agent and a debug agent.

A scenario

Imagine that in 2006, a user (say Aki) has the WhizBang 3000 PDA. The user carries it around with him
everywhere. The PDA has some pretty cool technology on board. In particular, it has GPS, speech recognition
and speech synthesis. It also interacts with sensors in the environment that let it know things like: the ambient
noise level, whether the user is at home, in the car, or in the office, and what other people are around.

One funny thing about the WhizBang is that it does not have a screen, or a microphone, or even a speaker.
Instead, itisjust asmall box that Aki carriesin hisbriefcase. It knowshow to communicate with itsenvironment,
so will use the car's speaker and microphone if it has one, and the desktop computer's screen if Aki isin the
office or even the Bluetooth headset that Aki sometimes wears.

Now, since the PDA is so smart: the device can be used in the car, at home or in the office. However, one
issue is to learn what modes the user prefers to use, depending on these factors. For example, if Aki receives
e-mail, should it be read aloud to him using the car's speakers, or displayed using the in-dash LCD?

Ideally, we'd like the WhizBang to learn what Aki likes to do. It will learn, for example, that if Aki isin
the car and it's not noisy, then it should read the e-mail out loud. But, if Aki'sin the office, it should display
them on his monitor.

In this chapter, we mock up some of the infrastructure, and show how such an application could be imple-
mented.

Cast of characters

What agents would be involved in such an application? Well, first, there's the agent that represents the
WhizBang itself. For this demonstration, we'll mock up the WhizBang as shown in figure Figure 6.1.

20

A collection of clients: the
mail reading application

% MICA Demonstration -0 X

Environment Conversation

Location InCA said: You hawe 19 mails. -
InCA said: | am displaying wour e-mail- please tell me if I'm wrong.

) Home ou said: get rmy mail.

® Car InCA said: Sure. Retriewing wour mail.

) INCA said: You hawe 25 mails.
) Office InCA said: | am displaying your e-mail- please tell me if I'm wrong.
. ol said: no, vau're right.
WD [AGOHIE InCa said: Hmmm, | didn't understand you.
® Alone ou said: get my mail.

) _ InCA said: Sure. Eetrieving your mail.

£ withFriends InCA said: You hawve 25 mails.

) WithStrangers InCA said: | am displaying vour e-mail- please tell me if I'm wrong.

ou =aid: get my mail.

Noise InCA said: Sure. Retriewing your mail.

InCA said: You hawe 9 mails.

InCA zaid: 1 am reading wour e-mail- please tall me if I'm wrong.
au said: get my mail.

InCA said: Sure. Retrieving wour mail.

B InCA said: You hawve 18 mails.

InCA said: 1 am displaying your e-mail- please tell me if I'm wrong.
ou said: wrong.

3 INCA said: Sorry, it seems | made a mistake. Should | hawe read or displayed wour e-mail?
ou sajd: read.

InCA said: Ok, I've noted that for future reference. Amything else | can do for you?
ol said: get my mail.

InCA said: Sure. Retrieving wour mail.

InCA said: You hawe 2 mails.

4]

get my mail.

Figure6.1. Screenshot of the Whizbang interface
To "mock up" the ability to detect information like who is around, we have a series of panels on the left
hand side for detecting the location, people who are around and the general background noise level. The rest
of the panel isfor a speech conversation between the user and WhizBang. For this demo, we'll use text.
We also make use of abogus email retrieval agent. When queried, this agent returns alist of e-mails. Cur-
rently, the number of e-mails is generated randomly, and the user may receive anywhere between 0 and 30
e-mails.

Thereis also anatural language processing agent. This agent "wraps around” the a C program that supports
an NLP system. This agent called the MicaBot Agent, is responsible for parsing what the user says.

Finally, there is alearning agent that we use to learn when to read e-mail and when to display it.

Therearesome additional agentsavailable: oneisthe debugger program that allowsthe user to see everything
on the blackboard, and the other is one for looking at the decision trees generated in the process of learning.

Setting up Mobs

In order to set up the system, decisions must first be made about what types of mobs agents will use to
communicate. First of al, to communicate text to and from the user, the type declaration in Figure 6.2 is used.

21

A collection of clients: the
mail reading application

<typedesc>
<nmpbdecl nane="text">
<sl|l ot nane="utterance"/>
</ nobdecl >
<nmpbdecl nane="t ext FronlJser">
<parent nanme="text"/>
</ nobdecl >
<nmpbdecl nane="t ext For User" >
<sl ot nanme="speaker"/>
<parent nanme="text"/>
</ nobdecl >
</typedesc>

Figure 6.2. Thetype declaration for types of text used between agents.

In Figure 6.2, three mob types are declared: a generic text mob, with asingle slot called "utterance” to store
what is being said®. There are two subtypes: t ext FromlJser andt ext For User . t ext For User hasan
additional slot to describe who it iswho istalking.

These mobs are used to communi cate between the WhizBang interface and the Natural Language Processing
(NLP) agent.

The WhizBang interface also uses several other mobs to describe the environment; such astheenvNoi se
mob to describe noise levels. Every time the noise level changes, it will write a new mob to the blackboard.
Similarly, for the location of the user, and the people around them.

Thee-mail agent only listensfor onemob: emai | Li st Request . It thenrespondswith an emailListReply,
which contains three slots: count -- the number of new e-mails, f r omand subj ect . The latter two are
multi-valued. In this particular case, the information is randomly generated.

The learning agent is rather complex. First of all, the learning task is defined. This is done by way of a
learning task configuration. Similar to the way that new types are declared, learning tasks are defined in con-
fi g/l earnt ask. Eachfilein that directory is read. The configuration file for the learning agent is shown
in Figure 6.3.

The current implementation of MICA will read the sl ot element of the xml document, but won't actually do anything about it. It's there
as aform of documentation,

22

A collection of clients: the
mail reading application

<| ear nt ask
nane="r eadO Di spl ayEmai | "
| ear ner="weka. cl assifiers.trees.j48.348"
dat afi | e="/tnp/readordi splay.arff"
nodel fil e="/tnp/readordisplay. mdl ">

<attribute name="l|ocation" type="di screte"
sour cenbb="envLocati on" sourcesl ot="|ocation" >
<val ue | abel =" hone"/ >
<val ue | abel ="office"/>
<val ue | abel ="car"/>
</attribute>

<attribute name="noi seLevel " type="conti nuous"
sour cenpb="envNoi se" sourcesl ot ="noi seLevel "/ >

<attribute name="whosaround" type="discrete"
sour cenpbb="envWiosAr ound" sour cesl ot ="whosAr ound" >
<val ue | abel ="al one"/ >
<val ue | abel ="wi t hfri ends"/>
<val ue | abel ="wi t hstrangers"/ >
</attribute>

<attribute name="num\ail s" type="continuous”
sour cenob="emai | Li st Repl y" sourcesl ot ="count"/>

<cl ass nane="readO Di spl ayEmai | ">
<val ue | abel ="askuser"/ >
<val ue | abel ="readmi |l "/ >
<val ue | abel ="di spl ay"/>
</ cl ass>
</ | ear nt ask>

Figure6.3.r eador di spl ay. xm

For agiven classification task (in this case "readOrDisplayEmail"), we define a learning algorithm for the
task aswell asfilesfor temporary resultsto be stored. A learning task consists of a set of attributes, and afinal
classthelearner istrying to classify. In this case, the possible actions are "readmail” or "display". The attributes
arethingslike the noise level, who is around and how many e-mailswere received. For each of these attributes,
the learning task extracts the value from information on the blackboard. It does this by listening to any new
mobs of the types important for this classification task; and thus has an idea of the "current" context.

Although this part is very complex, once alearning task is defined, other agents can use it easily. In order
to provide an example to the learner; al ear ner Tr ai n iswritten to the blackboard, specifying the learning
task and the actual class, given the current context. The learner then extracts the appropriate information from
the blackboard and stores the current situation as an example.

In order to use the learner to decide what it should do given the current context, it writesal ear ner Test
mob, with thefollowingfields: ar equest | d, sothat when the learner agent replies, the other agent will know
what the learner agent is replying to, and secondly the learning task. The learning agent then replies with a
| ear ner Repl y mob with the copied r equest | d, the predicted class and the confidence of the prediction.

Figure 6.4 shows a sequence diagram for the interactions that occur in this process.

23

A collection of clients: the
mail reading application

| User types: "get my

i mail"

|
[

textFromUser: text="get my mail"

envhoise: noiselevel=5 ' |
i WhizBang |
I | repors noise |
textForUser: text="Just a moment ..I" level
| | |
|emaiILisrRequesr: | |
n L 1
Results picked ! i I
up by MicaBot
P | emailListReply: count=l4| from=[senderl, ...] subjec{=[topicl, el
Agent i

T
|
textForlser: text="You have 14 me];sages. Read or displav?"l
| |
|
|

| User types:
textFromUser: text="display them" | "display them"

|
|
|
|
|
|
|
|IearnerTrain: task="readorr:|isplav" actualclass="disp||av"

|
|
I
|
L
[
|
|
|
|
|
|
| and Learning
|
|
|
|
|
|
|
|

Figure 6.4. Sequence diagram for training the WhizBang

In Figure 6.4, the blackboard is not explicitly shown; rather theinformation flows through the blackboard are
shown. "Notes" are toolsto aid in understanding. So, the user typesin "get my mail". The interface writes this
as amob to the blackboard. Since the MicaBot agent (the natural language agent) has registered for "textFro-
mUser" maobs, it isinformed. Similarly, the learning agent is aso informed when new information about en-
vironment is added to the blackboard. The process continues, with the MicaBot agent making a query of the
email agent; and generating a text description for the user.

The MicaBot agent in this case is designed to begin by eliciting user preferences, and eventually to use the
elicited preferencesto predict what the user would like. In this case, it tells the user, then responds to the user's
reply by providing an example to the learning system using al ear ner Tr ai n maob.

In order to run the demonstration of all of these agents running, firstly kill any blackboards or other agents
running (thisis not strictly necessary, but it helps to make sure the script will run). Then in the Mica directo-
ry, type java unsw.cse.mica.runner.MicaRunner examples'run/learnemail-run.xml. When the "start all"
buttons is hit, in addition to the agents mentioned above, this will open two other windows: firstly, a"MICA
debugger". This application is generally useful, and allows you to see all the information on the blackboard.
An example of the debugger is shown in Figure 6.5

24

A collection of clients: the
mail reading application

en OSArOUnd. en OSArOUnd _

@ [textForlser; textFarlser_o

@ [textFraomlser; textFramUser_0 i
D creationTime: [2003-07-10 11:44: 32 404] i
D creator: [TextDewvice]
D Utterance: [get my mail.

Q | emaillistEequest; emaillistEeguest_0
D creationTime: [2003-07-10 11:44:22.412]
D creatar: [Probotagent]

D | emailListEephs emaillistEepky, 0
D creationTime: [2003-07-10 11:44: 322 . 452]
|j| creator: [emailagent]
D from: [Test Sender 0, Test Sender 1, Test Sender 2, Tes
D subdject: [Test subject O, Test Subject 1, Test Subject 2,
D count: [£8]

1o CtextForUser: textForlser_1
D creationTime: [2002-07-10 11:44:22.565]
D creatar: [Probotagent]
D utterance: [Just a moment while | retriewe the mail.]
|j| speaker: [InCA]

@] textFarlser: textForlser_2

@] textFromUser: textFromUser_1

@] learnerTrain: learnerTrain_o

@] textFarlser: textForlser_3

| Ifh\rfl:rnmllrnr' towtCemeal oo

£
|
[l |
D

-

IPIJ

Figure 6.5. The MICA debugger

The second window opened displays the decision tree learned in the process of answering the question of
whether to read or display the e-mail. Y ou should hit the "Reload" button occasionally to reload the tree. It
isshown in Figure 6.6.

25

A collection of clients: the
mail reading application

Learnt model from: ftimp/readordisplay.md|

Figure 6.6. Treelearnt from conver sation with user

The above tree shows the concept learnt after a few rounds with the user. It has learnt that it should read e-
mailsin the car, and if at home, read e-mailsif there isless than 18 and display them if there is more than 18.

For acloser examination, users should consider reading the source code.

26

Chapter 7. Writing your first clients

In this chapter, we write from scratch a pair of clients to implement asimple "Knock knock” joke system.

27

Chapter 8. Writing your own transport
medium

Not yet written.

28

Chapter 9. Writing your own security
policy

Not yet written.

29

Chapter 10. Writing your own
blackboard

Not yet written

30

	Mica User's Guide
	Table of Contents
	Chapter 1. Introduction
	Basic introduction to Mica
	Comparing MICA to other systems
	MICA as a type of database
	MICA as a Publish/Subscribe Model
	MICA as a web service and/or RMI and/or RPC
	MICA compared to CORBA
	MICA as an agent architecture

	The manual

	Chapter 2. The MICA Design
	Basic entities
	The Blackboard
	Agents
	MICA Objects

	Putting the pieces together

	Chapter 3. Installing and running MICA
	Getting MICA
	MICA requirements
	Installing MICA
	A more detailed look

	Chapter 4. The MICA implementation
	Parts
	A quick walk through the MICA API
	unsw.cse.mica.data.Mob
	Transience
	Reserved slot names

	unsw.cse.mica.agent.AgentTransport
	unsw.cse.mica.agent.Agent
	Setting up Agents and Agent Transports

	The MICA type system
	Using the Blackboard
	Configuring MICA
	Giving information about types
	The MICA query language
	Example uses
	Getting all Mobs on the blackboard
	Getting all mobs of a particular type
	Selecting the order of objects
	Getting the first of a list of mobs
	Finding Mobs with certain properties

	Chapter 5. A simple client: SharedPad
	Chapter 6. A collection of clients: the mail reading application
	A scenario
	Cast of characters
	Setting up Mobs

	Chapter 7. Writing your first clients
	Chapter 8. Writing your own transport medium
	Chapter 9. Writing your own security policy
	Chapter 10. Writing your own blackboard

