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1 Introduction

The UNSW team took delivery of its HSR in April 2017 and has participated in
each RoboCup@Home DSPL up to 2022 (with the exception of 2020 and 2021
due to COVID).

This team description paper is accompanied by a video that demonstrates
some of our capabilities on the HSR. The video, taken in our HRI laboratory,
shows a stage II task from the 2019 @Home rule book: ”where is this”. The
demonstration includes: spoken interaction, world modelling, planning,
environmental reasoning, mapping and navigation, and object recognition in
different rooms.

The general theme of our work is on human-robot interaction and trust in
the robot. Another agent is trusted if its behaviour is predictable. That is, each
agent must build a model of the other agent that is accurate and reliable. Part
of our work is in this model building. Another related study is in multimodal
human-robot interaction. In particular, we can use the robot’s SLAM system,
and episodic memory to give the robot spatio-temporal awareness. This
knowledge can be used to assist in language understanding. For example, if the
language alone is not sufficient to disambiguate between a reference to an
object; proximity, function or recency can be used as reasonable guesses to
resolve the reference. To achieve this, the robot requires mapping at several
levels of abstraction. The lowest level is the occupancy grid created by SLAM.
On top of that, we require a topological map to associate spaces to names and
relations. These can then be turned into logical predicates and reasoning
applied within a logic framework. Connecting spatial reasoning to language
understanding is the topic of a current postgraduate research project.

Much of the current work is focused on improving the robot’s world model.
This is a new system which serves as the central repository of the robot’s short-
term and long-term memory. Somewhat like SOAR [1] and KnowRob [2], world
model is a symbolic representation that provides knowledge to the PDDL planner
and the spoken dialogue system.

Additional work, that began in 2021, combines AR/VR to investigate human-
robot interaction. The main aim is to use AR to enable the human to teach the
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robot, but also use the robot as a means of enhancing human learning. Several
papers in HRI conferences have been published on this topic [3].

2 Background

We have a substantial code base that has grown over the years that includes
SLAM and autonomous navigation, topological mapping, multi-modal
interaction for conversational agents, a deductive database for world modelling
and an episodic memory system. The remaining components, such as object
recognition are derived from existing open source software, especially pre-built
ROS packages.

2.1 World Model

The world model is a new research project that our team has been developing
for use in RoboCup 2023. The world model represents regions and objects and
stores them in a deductive database, making it easy to access the locations of
objects relative to specific regions and other objects. The object database is
automatically filled as the robot autonomously explores its surroundings using a
spacial visual system with inputs from YOLOv7. Meanwhile, the region database
is populated from a topological map program that is able to identify regions in
the occupancy grid created by SLAM.

The world model is central to the robot’s intelligent behaviour as it stores
the robot’s current beliefs about the world. These provide the context for
reasoning when, for example, the dialogue refers to objects or locations that
are not directly visible. The world model is also the source of information for
the domain description required by the PDDL planner.

2.2 Conversational Agent

A conversational agent was originally developed as part of a project to create a
“smart home” [4]. The occupants interacted with the robot and other devices in
the home by speech and gestures. Occupants are able ask for devices to be turned
on and off and to control television sets, audio systems, ask questions answered
from the web, etc. Agent scripts are written in a custom designed language, called
FrameScript. The agents interact with devices through a blackboard system.
This system has been ported to the HSR, adding planning agents and other
components needed for robot control. Agents interact with ROS nodes through
the blackboard mechanism. FrameScript can take its speech input from any
speech-to-text system. Currently, we are using VOSK.

The most recent addition to the conversational agent is a connection to the
HSR’s path planner to be able to output directions for the “where is” task. The
parser is augmented by the world model, which has knowledge of relations such
as “contained in”, so that the robot can correctly respond to utterances like
“I want a bag of chips”. The system knows that the chips are in the kitchen
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cupboard so directions are given to the cupboard. The SLAM map is labelled
with the locations of objects and spaces, which correspond to the symbolic spatial
relations stored in the world model. This provides the information required to
turn the path generated by the movement planner into words that make sense
to the human user.

2.3 Object Recognition and Grasping

For object recognition we have two approaches, one ”off-the-shelf” and the second
which we are developing ourselves. The of-the-shelf method uses YOLO [5] to
detect objects in the scene, placing bounding boxes around them and then using
a point cloud generated from the RGB-D camera to locate the object in space.
When attempting to grasp the object, we used ROS packages for finding the
grasp points and planning the arm movement.

As described in Section 2.1, once the recognition system has done its job, the
object’s properties, pose and location are stored in the world model so that this
information is available to the language and planning nodes.

We have also developed model-based approaches to 3D object recognition
using RGB-D cameras. The vision system extracts shape primitives (e.g. planes
and cylinders) from the point cloud. A relational learning system then builds
a description of the object class based on the relationships between the shape
primitive [6]. This method has been used in the rescue environment to recognise
staircases and other terrain features. Once a model of the object is created, it
is imported into a simulator, like Gazebo, which allows the robot to “visualise
actions” before executing them in the real world. We are also investigating other
applications of ‘logical vision” [7].

2.4 Externally Available Components

As indicated above, some components are derived from existing open source
software, especially ROS packages. We use the MoveIt or Agile Grasp ROS
packages for calculating inverse kinematics and performing manipulation tasks.
For face recognition and person tracking we use tools in OpenCV 3.0, and the
OpenNI/NiTE skeleton tracking library. The Speech-to-text voice recognition
software currently being used is Vosk. Additionally, we are utilising some off the
shelf cloud APIs such as Micorosoft Azure’s Face API for gender detection.

3 Research

One of the goals of our research is combining high-level reasoning with real-time
low-level sensing and control to improve the capabilities of autonomous robots.
Our long-term aim is to develop general-purpose intelligent systems that can
learn and be taught to perform many different tasks by interacting with their
environment. In the course of our research, we have created software that can
be ported to the Toyota HSR for the RoboCup@Home competition. Below, we
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Fig. 1. Software architecture of UNSW@Home

highlight the current focus of our research, and our key innovative technologies
and scientific contributions. An overview of the software architecture of our
@Home system is shown in Figure 1.

3.1 Human-Robot Interaction

The heart of the system is the dialogue manager, implemented in FrameScript,
which interacts with the world model, implemented using the Postgres database
system. Dialogue scripts can access and update the database with knowledge
of people, places, objects and actions. This database implements the system’s
working memory and it’s long term memory. Scripts can incorporate input and
output in different modalities, e.g. gestures as well as spoken dialogue. Responses
are formulated as goals in PDDL and passed to a planner, whose action models
are derived from the system’s long term memory.

Augmented Reality and Robot Learning Recent papers [3] describes a
taxonomy of uses of augmented and virtual reality in robotics. The aim of this
research is to investigate the use of AR in human-robot collaborative learning,
sometimes using games as a motivational tool. For example, the children’s game
“I Spy” can be used to teach a robot the labels of objects in its environment,
but where the robot has already been trained, it can be used to teach a child
to identify objects. We use a Microsoft HoloLens 2 as an interface that allows
the human to see and indicate objects. This is an alternative to using pointing
gestures for teaching a robot but is also more useful when the human is learning
to do the identification.

A followup to this project implements a learning-by-demonstration system
for the robot. In this case, AR is used to display to the human teacher the internal
decision making of the robot. A typical learning-by-demonstration system treats
the robot as a black box and human demonstrations are used as the seeds for
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some form of reinforcement learning. In our project, a decision procedure is
learned as a decision tree, which can be overlaid, in AR, over the observers view
of the robot. A simplified tree gives the trained some idea of the internal state
of the robot’s decision procedure, which can suggest the next best example to
demonstrate to guide the robot’s learning. This is intended to short-cut a large
amount of trial-and-error learning. The prototype system operates in simulation
and is being ported to the real robot.

3.2 Cognitive Hierarchy

While much of the above work is empirical, we wish to better understand the
interactions of components in a complex software system. We have developed a
novel meta-model for formalising cognitive hierarchies [8]. A cognitive
hierarchy consists of a set of nodes connected in a hierarchical graph. Every
node in the hierarchy has a world model and behaviour generation at a
particular level of abstraction, with the lowest-level node as a proxy for the
external world. Cognitive hierarchies described using this model are modular in
design and allow the integration of symbolic and sub-symbolic representations
in a common framework. The model has been demonstrated on several
platforms including a Baxter robot, which incorporates a simulator as its world
model, allowing the system to “visualise” the effects of actions before executing
them in the real world.

3.3 Human-Robot Interaction and Trust

Human-robot interaction may include speech, sound, music, gestures, body
movements, proximity, facial expressions, body language and touch. Poorly
designed interactions decrease the willingness of a human to use the robot. Our
research aims to improve human-robot interaction by studying two areas,
physical elements of human-robot interactions and the ability of the robot to
learn from and adapt to new dynamics of the interaction.

The physical components of human-robot interactions we study are touch,
gesture, and recognising human emotions through micro and macro human
expressions, and the manner in which a robot approaches a human. [9] The
goal is to prevent the human from being surprised or fearful of a robot’s
actions. We use machine learning to alter how the robot behaves and interacts
so that the human can teach the robot how they wish to interact, explaining
aspects of the interaction they prefer or dislike, find uncomfortable or
confronting.

An associated concern is how trustworthy humans regard a robot, especially
when they can learn and adapt to new situations. We are studying the change
in trust for a mixed initiative task under varying degrees of transparency of
the adaptation process. The cognitive architecture mentioned above includes the
ability for the robot to adapt to a change. It is implemented on a Baxter robot for
a mixed initiative problem solving task where the environment changes, requiring
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the robot to adapt on the job. This also requires modelling and evaluating the
evolving human-robot trust relationship as the robot learns.

For our research in Human-Robot Interaction we have access to a National
Facility for Human-Robot Interaction Research. It is a state-of-the-art facility for
non-intrusive real-time measurement of the properties that are linked to human
affect and intent.

3.4 Robot Learning

UNSW was known for its work in machine learning well before we began working
in robotics. In fact, one of the main motivations for entering robotics is that it
is such a rich source of data and problems that can be solved by learning.

The most recent work in robot learning employs a scene graph generator
(SGG) [10] to learn to recognise components of an object and their relations.
The SGG is a deep learning system that generates symbolic representations of
these relations. Thus, it provides a bridge between the sub-symbolic perceptual
system and the symbolic world model. In addition, a large synthetic data set has
been created his Blender to automatically generate many variations in shapes
and pose so that the system can learn a robust classifier.

We continue to develop an episodic memory system that enables the robot
to recall past events that may be relevant to the interaction or to solving a
present problem. This is the subject of a recently completed PhD thesis [11].
Event frames are stored in FrameScript’s memory with the two primary problems
being how to know what events should be remembered or forgotten and what
is an appropriate metric to use to determine what a relevant memory is. We
have used a novel knowledge acquisition system called “Ripple-Down Rules”
to interactively acquire rules for identifying similar events and for determining
which past events, stored in the episodic memory, are most relevant to the current
situation.

In other work, we have developed methods for learning how to traverse
difficult terrain by learning from demonstration and through
trial-and-error [12]. We combine learning abstract qualitative models with
reinforcement learning, where the abstract layer constrains search in the
lower-control layer to greatly reduce the number of trials required.

Another area of interest is giving the robot the ability to learn how to use
objects as tools [13]. This uses inductive logic programming to build theories of
how objects of different shapes interact with other objects and reasoning about
how to position and move them so that the object selected as a tool can allow
the robot to complete a task that that it could not otherwise do, e.g. using an
object as a hook to pull another object out of a narrow space. The perceptual
system builds models that are imported into a physics simulator, which is used to
“visualise” actions before they are executed, thus extending the robot’s planning
capabilities.

A limitation of previous work was the objects making up the tools had to
be simplified for the vision system. The scene graph generator described above
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enables us to improve tool learning by extending the capabilities of the vision
system to recognise more complex objects and their poses.

4 Experiments and Results

The accompanying video demonstrates results obtained using the Toyota HSR.
These include:

– Natural speech interaction using a dialogue manager that understands the
context of a conversation and uses the context to disambiguate utterances.

– The robot’s sensor’s give it an awareness of its surroundings and, coupled
with mapping, an awareness of space. This augments the dialogue
manager’s understanding of context beyond what is directly contained in
the conversation.

– the dialogue system has been integrated with a planner. Spoken commands
are interpreted by the dialogue system and, using its background knowledge,
it is able to transform the spoken commands into PDDL goal structures for
a planner.

– Planning actions include combining vision, 3D spatial representations,
natural language reasoning and path planning.

5 Conclusion

The major thrust of our current work in @Home is further developing the
world model with its connection to the robot’s perceptual system along with
the episodic memory to enhance the robot’s understanding of time and space.
The world model serves as the “glue” for the robot’s cognitive architecture, so
its development is crucial for further improvements in all of the robot’s
capabilities.
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Annex

The foreground software used in 2017, 2018 and 2019 has been made available
at http://robolab.cse.unsw.edu.au:4443/toyota-hsr/robocup2019. The software
is described in the README.md file of the git repository. An excerpt of the
readme is provided below.

The ROS packages of the foreground software are described below.

– hsrb unsw behaviour - manages, at at task level, the current activity that
the robot is executing.

– hsrb unsw database - tracks the internal memory of the robot, including
the current map, and location of rooms and objects within the map. The
database is integrated with other modules, such as the Clingo task planner.

– hsrb unsw framescript - contains the Framescript conversation files used in
RoboCup@Home DSPL.

– hsrb unsw general purpose - an attempt at the general purpose task.
– hsrb unsw grasping - control and operation of the HSR arm for picking up

objects.
– hsrb unsw follow me - ROS node handling the Help Me Carry task.
– hsrb unsw launch - common launch files
– hsrb unsw manipulation - control and operation of the HSR arm.
– hsrb unsw PDF logger - ROS node handling logging data to PDF.
– hsrb unsw robot screen - outputs internal status messages to display on the

HSR screen.
– hsrb unsw rqt - RQT plugins.
– hsrb unsw rviz - RViz Plugin for control of the HSR through RViz.
– hsrb unsw speech - PocketSphinx model files used in RoboCup@Home.
– hsrb unsw sound localisation - contains the code to perform sound

localisation.
– hsrb unsw storing groceries - task for storing groceries.
– hsrb unsw vision - Object recognition and training files for use in

RoboCup@Home.
– hsrb unsw vision msgs - ROS messages for vision communication topics.
– map markers - ROS node that handles keypoint locations and doors on a

map with the ability to remember waypoints dynamically.

We are using an external device for additional processing, compliant with
the rules of the Domestic Standard Platform League: Dell Alienware 17 (Core
i7, NVIDIA GeForce GTX 1080, 16Gb RAM)connected via Ethernet to the HSR,
mounted on the standard backpack mount.

UNSW uses the following third party software and libraries for the
competition:

– Vision Processing: YOLO, OpenPose
– Grasping: MoveIt, Grasp Pose Detection (GPD)
– SLAM and Navigation: GMapping, ROS navigation stack
– Speech: Vosk
– External Cloud APIs: Microsoft Azure Face API


