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1 Introduction

This team description paper is accompanied by a video that demonstrates
some of our capabilities on the HSR. The videos, taken in our HRI laboratory,
shows two stage I tasks ”clean the table” and ”carry my luggage” and a stage
II task ”where is this” from the 2019 @Home rule book. The demonstration
includes: spoken interaction, world modelling, planning, environmental
reasoning, mapping and navigation, SLAM, object recognition in different
rooms, manipulation and person recognition.

Much of the current work continues to be focused on developing the robot’s
world model. This serves as the central repository of the robot’s short-term and
long-term memory. Somewhat like SOAR [1] and KnowRob [2], the world model
is a symbolic representation that provides knowledge to the planner and the
spoken dialogue system. The planner is based on a modern version of Nilsson’s
Teleo-Reactive planner [3]. This work is being done in collaboration with Prof.
Keith Clark at Imperial College and Dr. Peter Robinson at the University of
Queensland [4].

We use the robot’s SLAM system, and episodic memory to give the robot
spatio-temporal awareness. This knowledge can be used to assist in language
understanding. For example, if the language alone is not sufficient to
disambiguate between a reference to an object; proximity, function or recency
can be used as reasonable guesses to resolve the reference. To achieve this, the
robot requires mapping at several levels of abstraction. The lowest level is the
occupancy grid created by SLAM. In addition, we require a topological map to
associate spaces to names and relations. These can then be turned into logical
predicates and reasoning applied within a logic framework. Connecting spatial
reasoning to language understanding is the topic of a current postgraduate
research project.

2 Background

We have a substantial code base that includes SLAM and autonomous
navigation, topological mapping, multi-modal interaction for conversational
agents, a deductive database for world modelling and an episodic memory
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system. We have added the TeleoR planning language [5], for implementing the
robot’s behaviours. The remaining components, such as object recognition are
derived from existing open source software, especially pre-built ROS packages.

2.1 World Model

The world model has been under development since RoboCup 2023. The world
model represents regions, objects and people and stores them in a deductive
database, making it easy to access the locations of objects relative to specific
regions and other objects. The object database is automatically filled as the robot
autonomously explores its surroundings using a vision pipeline with inputs from
YOLO. It also detects people in the environment and captures features that allow
re-recognition. Meanwhile, the region database is populated from a topological
map program that is able to identify regions in the occupancy grid created by
SLAM.

The world model is central to the robot’s intelligent behaviour as it stores
the robot’s current beliefs about the world. A current area of research is also
exploring the maintenance of beliefs of each person in the environment. These
provide the context for reasoning when, for example, the dialogue refers to
objects or locations that are not directly visible. The world model is also the
source of information for the domain description required by the planner.

2.2 Vision Pipeline

The vision pipeline provides a generalized image processing module. The
pipeline is designed to reduce computational overhead by only processing
frames that contain objects of interest. The modular plug-and-play approach
allows for easy expansion of the core functions enabling research and
development of new perception methods. The pipeline consists of object and
human pose detection, object annotation including position within the map,
size, shape, colour, and person recognition. Specific vision functions such as
bag handle detection or empty seat checker can draw from the data generated
by the pipeline. Ultralytic’s YOLOv10 is used in our vision pipeline to handle
object and human pose estimation. The Ultralytics framework provides
seamless deployment capability and enable us to swap to newer YOLO models
if appropriate.

2.3 Person Re-Identification

Person re-identification is an important part of human-robot interaction. Our
person re-identification process (Figure 1) extends current state-of-the-art
methods of object detection, classification and tracking. If a person is detected
in the scene the object track is verified and updated, and the viewpoint of the
person from the robot is determined using one of 8 defined viewpoints.
Features from the face and head are extracted when available and compared to
known people, if the person is recognised the features are updated in the world
model, if not, a new person is added to the world model.
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Fig. 1. Person Re-Identification High Level Architecture

2.4 Conversational Agent

The current dialogue system for the robot uses RASA, an open-source language
understanding and dialogue management system [6]. RASA Core can be executed
on a local host, with a ROS node serving as the interface that connects the RASA
model and user input text. The interface executes in a node, constantly passing
the input text to the NLP model (converted from speech by VOSK, a speech-
to-text system, described in 2.6). The output from the model is converted into
goals for the TeleoR planner.

The conversational agent is also connected to the HSR’s path planner to be
able to output directions for the “where is” task. The parser is augmented by the
world model, which has knowledge of relations such as “contained in”, so that
the robot can correctly respond to utterances like “I want a bag of chips”. The
system knows that the chips are in the kitchen cupboard so directions are given
to the cupboard. The SLAM map is labelled with the locations of objects and
spaces, which correspond to the symbolic spatial relations stored in the world
model. This provides the information required to turn the path generated by the
movement planner into words that make sense to the human user.

2.5 Object Recognition and Grasping

For object recognition we use YOLOv8 [7] to detect objects in the scene, placing
bounding boxes around them and then using a point cloud generated from the
RGB-D camera to locate the object in space. When attempting to grasp the
object, we used ROS packages for finding the grasp points and planning the arm
movement.

As described in Section 2.1, once the recognition system has done its job, the
object’s properties, pose and location are stored in the world model so that this
information is available to the language and planning nodes.
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Fig. 2. Software architecture of UNSW@Home

2.6 Externally Available Components

As above, some components are derived from existing open source software,
especially ROS packages. We use the MoveIt or Agile Grasp ROS packages for
calculating inverse kinematics and performing manipulation tasks. For face
recognition and person tracking we use tools in OpenCV 3.0, and the
OpenNI/NiTE skeleton tracking library. The speech-to-text voice recognition
software currently being used is Vosk. Additionally, we use some off the shelf
cloud APIs such as Micorosoft Azure’s Face API for gender detection. The
TeleoR rules is written in iProlog, an experimental Prolog interpreter
developed by our team. Later, this will also be ported to QU-Prolog1

3 Research

One of the goals of our research is combining high-level reasoning with real-time
low-level sensing and control to improve the capabilities of autonomous robots.
Our long-term aim is to develop general-purpose intelligent systems that can
learn and be taught to perform many different tasks by interacting with their
environment. In the course of our research, we have created software that can
be ported to the Toyota HSR for the RoboCup@Home competition. Below, we
highlight the current focus of our research, and our key innovative technologies
and scientific contributions. An overview of the software architecture of our
@Home system is shown in Figure 2.

The heart of the system is the world model, implemented using the Postgres
database system. Dialogue scripts can access and update the database with
knowledge of people, places, objects and actions. This database implements the
system’s working memory and it’s long term memory. Scripts can incorporate

1 https://staff.itee.uq.edu.au/pjr/
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input and output in different modalities, e.g. gestures as well as spoken
dialogue. Responses are formulated as goals and passed to the TeleoR planner.

3.1 Human-Robot Interaction and Trust

Human-robot interaction may include speech, sound, music, gestures, body
movements, proximity, facial expressions, body language and touch. Poorly
designed interactions decrease the willingness of a human to use the robot. Our
research aims to improve human-robot interaction by studying two areas,
physical elements of human-robot interactions and the ability of the robot to
learn from and adapt to new dynamics of the interaction.

The physical components of human-robot interactions we study are touch,
gesture, and recognising human emotions through micro and macro human
expressions, and the manner in which a robot approaches a human. [8] The
goal is to prevent the human from being surprised or fearful of a robot’s
actions. We use machine learning to alter how the robot behaves and interacts
so that the human can teach the robot how they wish to interact, explaining
aspects of the interaction they prefer or dislike, find uncomfortable or
confronting.

An associated concern is how trustworthy humans regard a robot, especially
when they can learn and adapt to new situations. We are studying the change
in trust for a mixed initiative task under varying degrees of transparency of
the adaptation process. The cognitive architecture mentioned above includes the
ability for the robot to adapt to a change. It is implemented on a Baxter robot for
a mixed initiative problem solving task where the environment changes, requiring
the robot to adapt on the job. This also requires modelling and evaluating the
evolving human-robot trust relationship as the robot learns.

For our research in Human-Robot Interaction we have access to a National
Facility for Human-Robot Interaction Research. It is a state-of-the-art facility for
non-intrusive real-time measurement of the properties that are linked to human
affect and intent.

3.2 Robot Learning

UNSW was known for its work in machine learning well before we began working
in robotics. In fact, one of the main motivations for entering robotics is that it
is such a rich source of data and problems that can be solved by learning.

The most recent work in robot learning employs a scene graph generator
(SGG) [9] to learn to recognise components of an object and their relations.
The SGG is a deep learning system that generates symbolic representations of
these relations. Thus, it provides a bridge between the sub-symbolic perceptual
system and the symbolic world model. In addition, a large synthetic data set has
been created his Blender to automatically generate many variations in shapes
and pose so that the system can learn a robust classifier.

We continue to develop an episodic memory system that enables the robot
to recall past events that may be relevant to the interaction or to solving a
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present problem. This was the subject of a PhD thesis [10]. Event frames are
stored in memory with the two primary problems being how to know what
events should be remembered or forgotten and what is an appropriate metric to
use to determine what a relevant memory is. We have used a novel knowledge
acquisition system called “Ripple-Down Rules” to interactively acquire rules for
identifying similar events and for determining which past events, stored in the
episodic memory, are most relevant to the current situation.

In other work, we have developed methods for learning how to traverse
difficult terrain by learning from demonstration and through
trial-and-error [11]. We combine learning abstract qualitative models with
reinforcement learning, where the abstract layer constrains search in the
lower-control layer to greatly reduce the number of trials required.

Another area of interest is giving the robot the ability to learn how to use
objects as tools [12]. This uses inductive logic programming to build theories of
how objects of different shapes interact with other objects and reasoning how to
position and move them so that the object selected as a tool can allow the robot
to complete a task that it could not otherwise do, e.g. using an object as a hook to
pull another object out of a narrow space. The perceptual system builds models
that are imported into a physics simulator, which is used to “visualize” actions
before they are executed, thus extending the robot’s planning capabilities.

A limitation of previous work was the objects making up the tools had to
be simplified for the vision system. The scene graph generator described above
enables us to improve tool learning by extending the capabilities of the vision
system to recognise more complex objects and their poses.

3.3 Teleo-Reactive Planner

In collaboration with Clark and Robinson, we are implementing a planner that
makes use of the Teleo-Reactive (TR) programming paradigm. The main
difference between a TR planner and a more traditional PDDL planner is that
the TR system attempts to implement a universal plan that is reactive than
predictive. A TR program consists of a collection of procedures, each of which
contains a set of rules that are implement what Nilsson called ”circuit
semantics”. That is, the system behaves as if all the conditions in all the rules
are continuously being evaluated just as in an electronic circuit. A TR
procedure has the general form:

proc(<arguments>)

<goal> -> <do nothing>

<conditionN> -> <actionN>

...

<condition1> -> <action1>

true -> <default action>

where the actions, may be calls to other TR procedures. The condition-action
rules are arranged such that the action of a rule lower in the procedure should
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result in the conditions of a higher rule being satisfied. The lowest level rule is the
default rule when no other condition is satisfied and it invokes a default action.
The top rule’s condition is satisfied when the goal for that procedure has been
satisfied. Because the conditions in all rules are, conceptually, being re-evaluated
continuously, the planner is very reactive, and thus, capable of responding quickly
to changes in the environment.

As an example, a simplified set of TR rules for cleaning the kitchen table is:

clean_table :-

not on_table(_) -> forget(current_task(clean_table));

holding(X) -> put_in_dishwasher(X);

on(X, table), near(table) -> pickup(X);

not near(table) -> goto(table);

not in(kitchen) -> goto(kitchen).

put_in_dishwasher(X) :-

not holding(X) -> forget(current_task(put_in_dishwasher));

near(dish_washer) -> place_in_dishwasher(X);

true -> goto(dishwasher).

Percepts, such as holding, are implemented as queries to the world model,
which includes the current robot state. Actions, such as goto are implemented
as messages sent to a ROS action server that communicates to the appropriate
nodes, like navigation.

At present, the TR rules must be hand-coded, but a subject of research is
how TR can be learned, either from demonstration or by experimentation. The
aim is to learn from far fewer examples than required by reinforcement learning.

4 Experiments and Results

The accompanying videos demonstrate results obtained using the Toyota HSR.
These include:

– Natural speech interaction using a dialogue manager that understands the
context of a conversation and uses the context to disambiguate utterances.

– The robot’s sensor’s give it an awareness of its surroundings and, coupled
with mapping and knowledge contained in the world model, an awareness of
space and objects in the environment.

– The vision system is capable of object recognition and tracking, human pose
estimation and ray tracing of arms to provide real-world context to dialogue.
The robot can differentiate between human users through facial recognition
and texture matching.

– A state machine is used as the planner which takes input from the dialogue
manager.

– Planning actions combining vision, knowledge from the world model, person
recognition, natural language reasoning, path planning and manipulation.

– Manipulation makes use of the Toyota HSRB interface
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5 Conclusion

The major thrust of our work in @Home has been developing the world model
with its connection to the robot’s perceptual system and the episodic memory to
enhance the robot’s understanding of time and space. The world model serves as
the “glue” for the robot’s cognitive architecture, so its development is crucial for
further improvements in all of the robot’s capabilities. With work on the world
model mostly completed, incorporation of planning through the TR system is
now the major focus of our new development.
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Annex

The foreground software used in 2024 has been made available at
https://robotics.cse.unsw.edu.au/gitlab/toyota-hsr/runsweep2024.
The software is described in the README.md file of the git repository. An
excerpt of the readme is provided below.

The ROS packages of the foreground software are described below.

– manipulation
• hsrb-interfaces-unsw : A fork of the toyota HSRB interface package
• object-grasper : Package contains services for manipulation actions

– msgs
• unsw action msg : Custom msgs for action dispatch
• unsw vision msgs: Custom msgs for unsw vision pipeline

– navigation
• gmapping : Fork of hsrb gmapping package used for mapping
• nav utils: Contains navigation scripts such as person-following. Intention
to refactor to action servers

• rosnav : Edited fork of HSRB rosnav repository
– planning

• action clients: State machines to dispatch planner outputted actions to
action action servers

• action servers: Servers for all base actions. Containing manipulation
actions at the moment

• state machine: Package used as proof of concept for continuous feedback
using smach library

• tr : In development proof of concept for teleo-reactive planner
– speech

• sound stream: Package to publish microphone stream to ROS topic
• speech to text : Vosk based model for speech to speech to text
• NOT INCLUDED:

∗ nlp-rasa: Package containing scripts for nlp using rasa model
– tasks

• carry my luggage: State machine/behaviour tree based control for carry
my luggage task using services

• clean the table: State machine based control for clean the table task,
using action clients and action servers

• inspection task : State machine based control for inspection task
• pick up apple: State machine based control for simple integrated vision

and manipulation task using services
• serve breakfast : State machine based control for serve breakfast written
at RoboCup 2024, unchanged and untested since competition. Will be
refactored

• store groceries: State machine based control for store groceries task
written at RoboCup 2024, unchanged untested since competition. Will
be refactored
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– tools
• common utils: Scripts that don’t really belong anywhere such as “door
checker” to check if a door has opened

– vision
• person-recognition: Person recognition and reidentification inserted in
vision pipeline

• utils: Specific vision nodes used for small tasks such as identifying a bag
handle or a person pointing

• yolov8 : Wrapper of yolov8 for ROS
– world model

• world-model : World model and scripts used to maintain belief store

We are using an external device for additional processing, compliant with
the rules of the Domestic Standard Platform League: Dell Mobile Precision
Workstation (Intel Core Ultra 9, NVIDIA GeForce 4090, 64Gb RAM)
connected via Ethernet to the HSR, mounted on the standard backpack mount.

UNSW uses the following third party software and libraries for the
competition:

– Vision Processing: YOLO, Face Recognition
– Grasping: MoveIt, Grasp Pose Detection (GPD)
– SLAM and Navigation: GMapping, ROS navigation stack
– Speech: Vosk
– Database: Postgresql

s


